留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时变性切削负载对异步型电主轴动态控制精度的影响

康辉民 张朝星 刘艳余 许功元 胡斌梁 周知进

康辉民, 张朝星, 刘艳余, 许功元, 胡斌梁, 周知进. 时变性切削负载对异步型电主轴动态控制精度的影响[J]. 机械科学与技术, 2017, 36(9): 1367-1374. doi: 10.13433/j.cnki.1003-8728.2017.0910
引用本文: 康辉民, 张朝星, 刘艳余, 许功元, 胡斌梁, 周知进. 时变性切削负载对异步型电主轴动态控制精度的影响[J]. 机械科学与技术, 2017, 36(9): 1367-1374. doi: 10.13433/j.cnki.1003-8728.2017.0910
Kang Huimin, Zhang Chaoxing, Liu Yanyu, Xu Gongyuan, Hu Binliang, Zhou Zhijin. Influence of Time-varying Cutting Load on Dynamic Control Accuracy of Asynchronous Motorized Spindle[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1367-1374. doi: 10.13433/j.cnki.1003-8728.2017.0910
Citation: Kang Huimin, Zhang Chaoxing, Liu Yanyu, Xu Gongyuan, Hu Binliang, Zhou Zhijin. Influence of Time-varying Cutting Load on Dynamic Control Accuracy of Asynchronous Motorized Spindle[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1367-1374. doi: 10.13433/j.cnki.1003-8728.2017.0910

时变性切削负载对异步型电主轴动态控制精度的影响

doi: 10.13433/j.cnki.1003-8728.2017.0910
基金项目: 

湖南省教育厅基金项目(12B042,15A063)、湖南省重点实验室开放基金项目(E21637)及湖南省自然科学基金项目(2017JJ2090)资助

详细信息
    作者简介:

    康辉民(1975-),副教授,博士,研究方向为数控技术及装备,xykanghm@163.com

Influence of Time-varying Cutting Load on Dynamic Control Accuracy of Asynchronous Motorized Spindle

  • 摘要: 针对电主轴在高速切削过程中动态精度控制不稳定问题,提出一种依据电主轴定子输入端电压、电流值来预测主轴输出转矩和转速的方法。该方法根据无速度传感器矢量控制原理,结合主轴电阻、电感等电磁参数,以转子磁链幅值和相位角为桥梁,建立电主轴定子输入端的三相电压、电流与转子输出端转速、转矩之间的数学模型,从而构建无速度传感器矢量控制下速度外环和电流内环的双闭环控制系统。通过该双闭环系统,将电主轴在切削过程中定子输入端的三相电压、电流,转换成两相旋转坐标系下的电压、电流。并在此基础上,进一步将电流环分解为磁链环和转矩环两个独立控制的子系统,以分别控制转子磁链和电磁转矩,从而可以通过观测磁链环的励磁电流和转矩环转矩电流的变化趋势,判断主轴输出端转矩、转速的稳定性。最后通过切削实验,验证了上述方法的可行性。
  • [1] 吴玉厚,李颂华.数控机床高速主轴系统[M].北京:科学出版社,2011 Wu Y H, Li S H. High speed spindle system of CNC machine tool[M]. Beijing:Science Press, 2011(in Chinese)
    [2] 康跃然,史晓军,高建民,等.多参量耦合的电主轴热特性建模及分析[J].西安交通大学学报,2016,50(8):32-37,129 Kang Y R, Shi X J, Gao J M, et al. Modeling and analyzing multi-variable coupling thermal characteristics for motorized spindle[J]. Journal of Xi'an Jiaotong University, 2016,50(8):32-37,129(in Chinese)
    [3] Abele E, Altintas Y, Brecher C. Machine tool spindle units[J]. CIRP Annals-Manufacturing Technology, 2010,59(2):781-802
    [4] Holkup T, Cao H, Kolář P, et al. Thermo-mechanical model of spindles[J]. CIRP Annals-Manufacturing Technology, 2010,59(1):365-368
    [5] 陈小安,刘俊峰,合烨,等.高速电主轴热态性能及其影响[J].机械工程学报,2013,49(11):135-142 Chen X A, Liu J F, He Y, et al. Thermal properties of high speed motorized spindle and their effects[J]. Journal of Mechanical Engineering, 2013,49(11):135-142(in Chinese)
    [6] 刘俊峰,陈小安.基于耦合模型的高速电主轴动态分析与优化[J].机械工程学报,2014,50(11):93-100 Liu J F, Chen X A. Integrated model-based dynamic analysis and optimization of high speed motorized spindles[J]. Journal of Mechanical Engineering, 2014,50(11):93-100(in Chinese)
    [7] 汪博,孙伟,闻邦椿.高转速对电主轴系统动力学特性的影响分析[J].工程力学,2015,32(6):231-237,256 Wang B, Sun W, Wen B C. The effect of high speeds on dynamic characteristics of motorized spindle system[J]. Engineering Mechanics, 2015,32(6):231-237,256(in Chinese)
    [8] 孟德浩,龙新华,孟光.高速电主轴转子——轴承系统动态特性分析[J].噪声与振动控制,2012,32(2):7-12 Meng D H, Long X H, Meng G. Analysis of dynamic characteristics of rotor-bearing system of high speed spindle[J]. Noise and Vibration Control, 2012,32(2):7-12(in Chinese)
    [9] 张丽秀,阎铭,吴玉厚,等.150MD24Z7.5高速电主轴多场耦合模型与动态性能预测[J].振动与冲击,2016,35(1):59-65 Zhang L X, Yan M, Wu Y H, et al. Multi-field coupled model and dynamic performance prediction for 150MD24Z7.5 motorized spindle[J]. Journal of Vibration and Shock, 2016,35(1):59-65(in Chinese)
    [10] 吴亮亮.磁悬浮轴承-转子系统的运动稳定性与控制研究[D].天津:河北工业大学,2015 Wu L L. Research on motion stability and control of magnetic bearing-rotor system[D]. Tianjin:Hebei University of Technology, 2015(in Chinese)
    [11] 谢振宇,牟伟兴,周红凯,等.基于转速的磁悬浮轴承转子系统变参数控制[J].振动工程学报,2012,25(6):739-744 Xie Z Y, Mou W X, Zhou H K, et al. Variable parameter control of active magnetic bearing rotor system based on rotation speed[J]. Journal of Vibration Engineering, 2012,25(6):739-744(in Chinese)
    [12] 赵静.磁悬浮轴承电控系统的研究[D].南京:南京航空航天大学,2015 Zhao J. Research on electric control system of active magnetic bearings[J]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese)
    [13] 章淑锳.磁悬浮轴承柔性转子系统的H∞控制研究[D].南京:南京航空航天大学,2011 Zhang S Y. Research on H∞control of flexible rotor system supported by active magnetic bearings[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese)
    [14] 龙亚文,谢振宇,徐欣.磁悬浮轴承H∞鲁棒控制策略研究[J].振动与冲击,2013,32(23):115-120 Long Y W, Xie Z Y, Xu X. H∞robust control strategy for an active magnetic bearing[J]. Journal of Vibration and Shock, 2013,32(23):115-120(in Chinese)
    [15] McFarlane D, Glover K. A loop-shaping design procedure using H∞synthesis[J]. IEEE Transactions on Automatic Control, 1992,37(6):759-769
    [16] Pesch A H. Development of chatter attenuation robust control for an AMB machining spindle[D]. Cleveland, Ohio:Cleveland State University, 2013
    [17] 吴国庆,张钢,张建生,等.基于DSP的主动磁轴承电主轴控制系统研究[J].电机与控制学报,2006,10(2):118-120 Wu G Q, Zhang G, Zhang J S, et al. Study of control system of motorized spindle supported with AMB based on DSP[J]. Electric Machines and Control, 2006,10(2):118-120(in Chinese)
    [18] 汤恩琼,房建成,郑世强.磁悬浮电动机柔性转子振动控制与试验研究[J].机械工程学报,2015,51(1):106-116 Tang E Q, Fang J C, Zheng S Q. Vibration control and experimental study of flexible rotor in magnetically suspended motor[J]. Journal of Mechanical Engineering, 2015,51(1):106-116(in Chinese)
    [19] 朱熀秋,黄振跃,阮颖,等.交流主动磁轴承电主轴线性二次型最优控制[J].电机与控制学报,2012,16(10):71-78,94 Zhu H Q, Huang Z Y, Ruan Y, et al. Linear quadratic optimal control of electric spindle supported by AC active magnetic bearings[J]. Electric Machines and Control, 2012,16(10):71-78,94(in Chinese)
  • 加载中
计量
  • 文章访问数:  178
  • HTML全文浏览量:  30
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-10
  • 刊出日期:  2017-09-05

目录

    /

    返回文章
    返回