留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全向移动平台运动学分析及其自适应控制器设计

唐炜 刘勇 胡海秀 顾金凤 程鲲鹏

唐炜, 刘勇, 胡海秀, 顾金凤, 程鲲鹏. 全向移动平台运动学分析及其自适应控制器设计[J]. 机械科学与技术, 2017, 36(6): 883-889. doi: 10.13433/j.cnki.1003-8728.2017.0610
引用本文: 唐炜, 刘勇, 胡海秀, 顾金凤, 程鲲鹏. 全向移动平台运动学分析及其自适应控制器设计[J]. 机械科学与技术, 2017, 36(6): 883-889. doi: 10.13433/j.cnki.1003-8728.2017.0610
Tang Wei, Liu Yong, Hu Haixiu, Gu Jinfeng, Cheng Kunpeng. Kinematics Analysis and Self-adaptive Controller Design of Omni-directional Movement Platform[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 883-889. doi: 10.13433/j.cnki.1003-8728.2017.0610
Citation: Tang Wei, Liu Yong, Hu Haixiu, Gu Jinfeng, Cheng Kunpeng. Kinematics Analysis and Self-adaptive Controller Design of Omni-directional Movement Platform[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 883-889. doi: 10.13433/j.cnki.1003-8728.2017.0610

全向移动平台运动学分析及其自适应控制器设计

doi: 10.13433/j.cnki.1003-8728.2017.0610
基金项目: 

江苏省普通高校研究生实践创新计划项目(SJLX15_0524)资助

详细信息
    作者简介:

    唐炜(1973-),副教授,研究方向为智能测控技术、机电控制及自动化,tangweisc@163.com

Kinematics Analysis and Self-adaptive Controller Design of Omni-directional Movement Platform

  • 摘要: 在分析Mecanum轮结构及其工作原理的基础上,基于矢量分析法建立了四轮全向移动平台一般形式的运动学模型;针对常规PID控制无法在线自整定及其响应实时性有待提高等问题,采用CMAC(Cerebellar model articulation controller)+PID联合控制策略,设计了全向移动平台嵌入式自适应控制器;进行了直流电机调速MATLAB仿真及实验对比分析,并通过多组典型实验对样机运动性能进行了测试。结果表明,该Mecanum轮全向移动平台运动学模型是合理的,CMAC+PID自适应控制器动态响应速度快、控制精度高、鲁棒性好,样机能在平面内较好地实现横/纵向平移、原地旋转及全方位运动,总体性能可满足工程应用要求。
  • [1] 赵冬斌,易建强,邓旭玥.全方位移动机器人结构和运动分析[J].机器人,2003,25(5):394-398 Zhao D B, Yi J Q, Deng X Y. Structure and kinematic analysis of omni-directional mobile robots[J]. Robot, 2003,25(5):394-398 (in Chinese)
    [2] Campion G, Bastin G, Dandrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Transactions on Robotics and Automation, 1996,12(1):47-62
    [3] 王一治.适于楼宇环境的全方位移动技术研究[D].上海:上海大学,2010 Wang Y Z. Research on omni-directional moving technology for euilding environment[D]. Shanghai: Shanghai University, 2010 (in Chinese)
    [4] 张翮,熊蓉,褚健,等.一种全方位移动机器人的运动分析与控制实现[J].浙江大学学报(工学版),2004,38(12):1650-1653,1672 Zhang H, Xiong R, Chu J, et al. Motion analysis and control realization of omni-directional robot[J]. Journal of Zhejiang University (Engineering Science), 2004,38(12):1650-1653,1672 (in Chinese)
    [5] 陈文科,陈志,王志,等.万向电动底盘控制系统设计[J].农业机械学报,2013,44(6):19-23,34 Chen W K, Chen Z, Wang Z, et al. Control system design of omnidirectional electric chassis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(6):19-23,34 (in Chinese)
    [6] 喻俊,武星,沈伟良.基于Mecanum轮的全向运动视觉导引AGV研制[J].机械设计与制造工程,2015,44(9):35-39 Yu J, Wu X, Shen W L. Development of omnidirectional vision-guided AGV based on mecanum wheel[J]. Machine Design and Manufacturing Engineering, 2015,44(9):35-39 (in Chinese)
    [7] 刘磊,许晓鸣.带Mecanum轮的移动机器人全向移动控制研究[J].系统工程理论与实践,2011,31(S1):70-71 Liu L, Xu X M. Research on omni directional control of Mecanum wheel mobile robot[J]. Systems Engineering-Theory & Practice, 2011,31(S1):70-71 (in Chinese)
    [8] Tan X K, Su J B, Li L. Fuzzy optimization and learning based parameter auto-tuning method for PID controller[J]. Hydromechatronics Engineering, 2013,41(24):116-120
    [9] 杨鹏,施光林,泮健.基于CMAC+PID复合控制的多缸力加载控制研究[J].液压与气动,2011,(2):49-53 Yang P, Shi G L, Pan J. Study of multi-cylinders force control system based on CMAC+PID[J]. Chinese Hydraulics and Pneumatics, 2011,(2):49-53 (in Chinese)
    [10] 韩晓斌,于明礼.基于模糊免疫PID的超声电机控制[J].机械科学与技术,2015,34(10):1614-1620 Han X B, Yu M L. Ultrasonic motor control with fuzzy immune PID control method[J]. Mechanical Science and Technology for Aerospace Engineering, 2015,34(10):1614-1620 (in Chinese)
    [11] Gfrerrer A. Geometry and kinematics of the Mecanum wheel[J]. Computer Aided Geometric Design, 2008,25(9):784-791
    [12] 王一治,常德功.Mecanum四轮全方位系统的运动性能分析及结构形式优选[J].机械工程学报,2009,45(5):307-310,316 Wang Y Z, Chang D G. Motion performance analysis and layout selection for motion system with four Mecannum wheels[J]. Journal of Mechanical Engineering, 2009,45(5):307-310,316 (in Chinese)
    [13] 王亮,孙守娟.基于模糊控制的双闭环系统及仿真分析[J].制造业自动化,2013,35(9):51-53 Wang L, Sun S J. The simulation analysis of double loop system based on the fuzzy control[J]. Manufacturing Automation, 2013,35(9):51-53 (in Chinese)
    [14] 张丹红,胡孝芳,苏义鑫,等.结合重复控制补偿和CMAC的液压伺服系统PID控制研究[J].机械科学与技术,2012,31(5):749-752 Zhang D H, Hu X F, Su Y X, et al. PID control of hydraulic servo system that combines repetitive compensation control with CMAC[J]. Mechanical Science and Technology for Aerospace Engineering, 2012,31(5):749-752 (in Chinese)
    [15] 李慧,刘星桥,李景.异步电动机调速系统自适应辨识的CMAC-ADRC算法[J].农业机械学报,2015,46(3):358-365 Li H, Liu X Q, Li J. CMAC-ADRC algorithm based on adaptive parameter identification for asynchronous motor speed control system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(3):358-365 (in Chinese)
  • 加载中
计量
  • 文章访问数:  253
  • HTML全文浏览量:  49
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-27
  • 刊出日期:  2017-06-05

目录

    /

    返回文章
    返回