留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻质点阵夹芯结构主动换热性能影响因素分析

闫国良 毛伟 万小朋

闫国良, 毛伟, 万小朋. 轻质点阵夹芯结构主动换热性能影响因素分析[J]. 机械科学与技术, 2017, 36(3): 481-486. doi: 10.13433/j.cnki.1003-8728.2017.0325
引用本文: 闫国良, 毛伟, 万小朋. 轻质点阵夹芯结构主动换热性能影响因素分析[J]. 机械科学与技术, 2017, 36(3): 481-486. doi: 10.13433/j.cnki.1003-8728.2017.0325
Yan Guoliang, Mao Wei, Wan Xiaopeng. Analysis of Active Heat Transfer Characteristics for Light-weight Sandwich Panel with Lattice-frame Material[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 481-486. doi: 10.13433/j.cnki.1003-8728.2017.0325
Citation: Yan Guoliang, Mao Wei, Wan Xiaopeng. Analysis of Active Heat Transfer Characteristics for Light-weight Sandwich Panel with Lattice-frame Material[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 481-486. doi: 10.13433/j.cnki.1003-8728.2017.0325

轻质点阵夹芯结构主动换热性能影响因素分析

doi: 10.13433/j.cnki.1003-8728.2017.0325
基金项目: 

陕西省科技攻关项目(2016GY-200)资助

详细信息
    作者简介:

    闫国良(1979-),高级工程师,硕士,研究方向为飞行器结构设计、热防护结构分析与设计,maowei201408@163.com

Analysis of Active Heat Transfer Characteristics for Light-weight Sandwich Panel with Lattice-frame Material

  • 摘要: 针对点阵夹芯结构换热性能影响因素问题,采用翅片法推导四面体型点阵结构等热流密度和等壁面温度边界条件下的努塞尔数,以此表征结构的换热性能,并与实验结果进行对比。进而讨论结构支杆长度、支杆直径、导热系数和流动方向单胞个数对结构换热性能的影响,并比较相同孔隙率下四面体型、金字塔型和Kagome型点阵结构的换热性能。结果表明,点阵结构支杆长度和流动方向单胞个数对结构换热性能影响较大,Kagome型结构换热性能明显优于其他两类。
  • [1] Blosser M L. Advanced metallic thermal protection systems for reusable launch vehicles[C]//Proceedings of the Space Technology & Applications International Forum, 2000:1125-1143
    [2] 张健,黄晨光.方形管耦合传热及管道热应力分布数值模拟[C]//第一届全国高超声速科技学术会议论文集,云南丽江:中国力学学会,2008:169-175 Zhang J, Huang C G. 3D numerical simulation of transient thermo-fluid-solid coupling problems in a rectangular channel[C]//Proceedings of National Hypersonic Technology, Yunnan Lijiang:Chinese Society of Theoretical and Applied Mechanics, 2008:169-175(in Chinese)
    [3] 卢天健,何德坪,陈常青,等.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535 Lu T J, He D P, Chen C Q, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006,36(4):517-535(in Chinese)
    [4] Rakow J F, Waas A M. Thermal buckling of metal foam sandwich panels for convective thermal protection systems[J]. Journal of Spacecraft and Rockets, 2005,42(5):832-844
    [5] Rakow J F, Waas A M. Response of actively cooled metal foam sandwich panels exposed to thermal loading[J]. AIAA Journal, 2007,45(2):329-336
    [6] Lu T J. Heat transfer efficiency of metal honeycombs[J]. International Journal of Heat and Mass Transfer, 1999,42(11):2031-2040
    [7] 吴林志,殷莎,马力.复合材料点阵夹芯结构的耦合换热及热应力分析[J].功能材料,2010,41(6):969-972 Wu L Z, Yin S, Ma L. Coupled heat transfer and thermal stress analysis of composite lattice core sandwich structure[J]. Journal of Functional Materials, 2010,41(6):969-972(in Chinese)
    [8] Kim T, Hodson H P, Lu T J. Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material[J]. International Journal of Heat and Mass Transfer, 2005,48(19-20):4243-4264
    [9] Kim T, Zhao C Y, Lu T J, et al. Convective heat dissipation with lattice-frame materials[J]. Mechanics of Materials, 2004,36(8):767-780
    [10] Kim T, Hodson H P, Lu T J. Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material[J]. International Journal of Heat and Mass Transfer, 2004,47(6-7):1129-1140
    [11] 罗树坤,宋宏伟,黄晨光,等.轻质点阵主动冷却壁板热流固耦合响应分析[J].强度与环境,2012,39(2):31-40 Luo S K, Song H W, Huang C G, et al. Thermal-fluid-solid coupling analysis of light-weight actively cooled panel with lattice-framed material[J]. Structure & Environment Engineering, 2012,39(2):31-40(in Chinese)
    [12] Gao L, Sun Y G. Fluid flow and heat transfer characteristics of composite lattice core sandwich structures[J]. Journal of Thermophysics and Heat Transfer, 2014,28(2):258-269
    [13] 张永存.多孔材料传热特性分析与散热结构优化设计[D].大连:大连理工大学,2008:8-9 Zhang Y C. Heat transfer performance of cellular materials and optimization design of heat dissipation structure[D]. Dalian:Dalian University of Technology, 2008:8-9(in Chinese)
    [14] Valdevit L, Pantano A, Stone H A, et al. Optimal active cooling performance of metallic sandwich panels with prismatic cores[J]. International Journal of Heat and Mass Transfer, 2006,49(21-22):3819-3830
    [15] Zukauskas A, Ziugzda J. Heat transfer of a cylinder in crossflow[M]. Washington DC:Hemisphere Publishing Corp, 1985:219-220
    [16] Wadley H N G. Multifunctional periodic cellular metals[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2006,364(1838):31-68
  • 加载中
计量
  • 文章访问数:  154
  • HTML全文浏览量:  34
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-28
  • 刊出日期:  2017-03-05

目录

    /

    返回文章
    返回