留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于内聚单元的复合材料层合板低速冲击损伤的数值模拟

刘洪权 谭申刚 薛应举

刘洪权, 谭申刚, 薛应举. 基于内聚单元的复合材料层合板低速冲击损伤的数值模拟[J]. 机械科学与技术, 2016, 35(9): 1455-1460. doi: 10.13433/j.cnki.1003-8728.2016.0926
引用本文: 刘洪权, 谭申刚, 薛应举. 基于内聚单元的复合材料层合板低速冲击损伤的数值模拟[J]. 机械科学与技术, 2016, 35(9): 1455-1460. doi: 10.13433/j.cnki.1003-8728.2016.0926
Liu Hongquan, Tan Shen'gang, Xue Yingju. Numerical Simulation of Low-velocity Impact Damage in Laminated Com-posites by Using Cohesive Element[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1455-1460. doi: 10.13433/j.cnki.1003-8728.2016.0926
Citation: Liu Hongquan, Tan Shen'gang, Xue Yingju. Numerical Simulation of Low-velocity Impact Damage in Laminated Com-posites by Using Cohesive Element[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1455-1460. doi: 10.13433/j.cnki.1003-8728.2016.0926

基于内聚单元的复合材料层合板低速冲击损伤的数值模拟

doi: 10.13433/j.cnki.1003-8728.2016.0926
详细信息
    作者简介:

    刘洪权(1981-),高级工程师,博士研究生,研究方向为复合材料结构强度设计,xiaoliu810609@sina.com

Numerical Simulation of Low-velocity Impact Damage in Laminated Com-posites by Using Cohesive Element

  • 摘要: 建立了一套有限元模型来预测复合材料正交层合板由低速冲击载荷引起的层间应力及损伤。采用连续壳单元模拟层合板的各个单层,在复合材料层合板的可能损伤区域设置内聚单元模拟面内基体裂纹和层间分层损伤的起始和扩展。引入层间摩擦力模型模拟层间压缩应力对分层损伤的抑制作用。对于正交层合板,有限元模型准确的模拟了低速冲击载荷引起的分层损伤的面积和形状。数值模拟结果也表明面内基体裂纹与层间分层存在着相互作用关系,基体裂纹影响着分层损伤预测的准确性。有限元模拟结果和试验结果的对比表明,基于内聚单元的有限元模型可以用在复合材料正交层合板低速冲击损伤的数值模拟中。
  • [1] Davies G A O, Olsson R. Impact on composite structures[J]. The Aeronautical Journal, 2004,108(1089):541-563
    [2] Abrate S. Impact on composite structures[M]. London: Cambridge University Press, 1998
    [3] Abrate S. Impact on laminated composites: recent advances[J]. Applied Mechanics Reviews, 1994,47(11):517-544
    [4] Chang F K, Chang K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987,21(9):834-855
    [5] Choi H Y, Chang F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials, 1992,26(14):2134-2169
    [6] Hou J P, Petrinic N, Ruiz C. A delamination criterion for laminated composites under low-velocity impact[J]. Composites Science and Technology, 2001,61(14):2069-2074
    [7] Bouvet C, Castanie B, Bizeul M, et al. Low velocity impact modelling in laminate composite panels with discrete interface elements[J]. International Journal of Solids and Structures, 2009,46(14-15):2809-2821
    [8] Zheng S, Sun C T. A double-plate finite-element model for the impact-induced delamination problem[J]. Composites Science and Technology, 1995,53(1):111-118
    [9] Li C F, Hu N, Yin Y J, et al. Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model[J]. Composites Part A: Applied Science and Manufacturing, 2002,33(8):1055-1062
    [10] Aymerich F, Dore F, Priolo P. Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements[J]. Composites Science and Technology, 2009,69(11-12):1699-1709
    [11] Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements[J]. Composites Science and Technology, 2008,68(12):2383-2390
    [12] Borg R, Nilsson L, Simonsson K. Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model[J]. Composites Science and Technology, 2004,64(2):279-288
    [13] Elder D J, Thomson R S, Nguyen M Q, et al. Review of delamination predictive methods for low speed impact of composite laminates[J]. Composite Structures, 2004,66(1-4):677-683
    [14] Wisnom M R. Modelling discrete failures in composites with interface elements[J]. Composites Part A: Applied Science and Manufacturing, 2010,41(7):795-805
    [15] Davies G A O, Zhang X. Impact damage prediction in carbon composite structures[J]. International Journal of Impact Engineering, 1995,16(1):149-170
    [16] Wiggenraad J F M, Zhang X, Davies G A O. Impact damage prediction and failure analysis of heavily loaded, blade-stiffened composite wing panels[J]. Composite Structures, 1999,45(2):81-103
    [17] Chang F K, Choi H Y, Jeng S T. Study on impact damage in laminated composites[J]. Mechanics of Materials, 1990,10(1-2):83-95
    [18] Ghelli D, Minak G. Low velocity impact and compression after impact tests on thin carbon/epoxy laminates[J]. Composite Part B: Engineering, 2011,42(7):2067-2079
    [19] Liu H Q. Ply clustering effect on composite laminates under low-velocity impact using FEA[D]. Cranfield: Cranfield University, 2012
    [20] Shet C, Chandra N. Analysis of energy balance when using cohesive zone models to simulate fracture processes[J]. Journal of Materials Science and Technology, 2002,124(4):440-450
    [21] Williams J G, Hadavinia H. Analytical solutions for cohesive zone models[J]. Journal of the Mechanics and Physics of Solids, 2002,50(4):809-825
    [22] Johnson W S, Mangalgiri P D. Investigation of fiber bridging in double cantilever beam specimens[R]. NASA Technical Memorandum 87716, 1986
  • 加载中
计量
  • 文章访问数:  137
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-07
  • 刊出日期:  2016-09-05

目录

    /

    返回文章
    返回