留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金高速铣削加工的有限元模拟与分析

王明海 王京刚 郑耀辉 李世永 高蕾

王明海, 王京刚, 郑耀辉, 李世永, 高蕾. 钛合金高速铣削加工的有限元模拟与分析[J]. 机械科学与技术, 2015, 34(6): 898-902. doi: 10.13433/j.cnki.1003-8728.2015.0616
引用本文: 王明海, 王京刚, 郑耀辉, 李世永, 高蕾. 钛合金高速铣削加工的有限元模拟与分析[J]. 机械科学与技术, 2015, 34(6): 898-902. doi: 10.13433/j.cnki.1003-8728.2015.0616
Wang Minghai, Wang Jinggang, Zheng Yaohui, Li Shiyong, Gao Lei. Finite Element Simulation and Analysis of Titanium Alloy under High-speed Milling[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(6): 898-902. doi: 10.13433/j.cnki.1003-8728.2015.0616
Citation: Wang Minghai, Wang Jinggang, Zheng Yaohui, Li Shiyong, Gao Lei. Finite Element Simulation and Analysis of Titanium Alloy under High-speed Milling[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(6): 898-902. doi: 10.13433/j.cnki.1003-8728.2015.0616

钛合金高速铣削加工的有限元模拟与分析

doi: 10.13433/j.cnki.1003-8728.2015.0616
基金项目: 

中航产学研创新基金项目(CXY2010SH29)资助

详细信息
    作者简介:

    王明海(1971-),教授,博士,研究方向为精密高效数控加工技术,wangminghai2008@163.com

Finite Element Simulation and Analysis of Titanium Alloy under High-speed Milling

  • 摘要: 采用有限元法建立了更接近实际的铣刀结构模型及三维铣削模型,模拟了钛合金Ti6Al4V高速铣削切屑的形成过程,得到了铣削过程的温度分布云图,分析了切削过程中残余应力的分布,并提出了采用有限元仿真铣削工件表面的位移大小,把表面的轮廓算数平均偏差作为表面粗糙度评定参数的方法。结果表明:切屑区最高温度出现在距离刀尖0.01~0.03 mm的刀-屑接触处,当主轴转速为9 500 r/min时,温度有所下降。工件的残余应力在表层由拉应力迅速的转变为压应力,在100~200 μm之间出现残余压应力的最大值。当主轴转速为9 500 r/min,每齿进给量为0.02 mm时,表面粗糙度取得最小值。
  • [1] 杨振朝,张定华,姚倡锋,等.TC4钛合金高速铣削参数对表面完整性影响研究[J].西北工业大学学报,2009,27(4):538-543 Yang Z C, Zhang D H, Yao C F, et al. Effects of high-speed milling parameters on surface integrity of TC4 titanium alloy[J]. Journal of Northwestern Polytechnical University, 2009,27(4):538-543 (in Chinese)
    [2] Li A H, Zhao J, Luo H B, et al. Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools[J]. International Journal of Manufacturing Technology,2012,58(5~8):465-478
    [3] Sutter G, List G. Very high speed cutting of Ti-6Al-4V titanium alloy-change in morphology and mechanism of chip formation[J]. International Journal of Machine Tools & Manufacture,2013,66:37-43
    [4] 刘鹏,徐九华,傅玉灿.聚晶金刚石刀具高速铣削钛合金切削温度分析[J].哈尔滨工业大学学报,2011,43(11):95-100 Liu P, Xu J H, Fu Y C. Cutting temperature in high speed milling of titanium alloy with polycrystalline diamond tool[J]. Journal of Harbin Institute of Technology,2011,43(11):95-100 (in Chinese)
    [5] Madalina Calamaz, Dominique Coupard, Franck Girot. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools & Manufacture,2008,48:275-288
    [6] Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: a review[J]. International Journal of Machine Tools & Manufacture,2008,48:275-288
    [7] Ratchev S M, Afazov S M, Becker A A, et al. Mathematical modelling and integration of micro-scale residual stresses into axisymmetric FE models of Ti6Al4V alloy in turning[J]. CIRP Journal of Manufacturing Science and Technology,2011,4(1):80-89
    [8] 田荣鑫,姚倡锋,黄新春,等.面向加工表面粗糙度的钛合金高速铣削工艺参数区间敏感性及优选[J].航空学报,2010:31(12):2464-2470 Tian R X, Yao C F, Huang X C, et al. Process parameter interval sensitivity and optimization of machined surface roughness for high-speed milling of titanium alloys[J]. Acta Aeronautica Et Astronautica Sinica, 2010:31(12):2464-2470 (in Chinese)
    [9] 孙雅洲,刘海涛,卢泽生.基于热力耦合模型的切削加工残余应力的模拟及试验研究[J].机械工程学报,2011,47(1):187-193 Sun Y Z, Liu H T, Lu Z S. Finite element simulation and experimental research of residual stresses in the cutting based on the coupled thermo-mechanical model[J]. Journal of Mechanical Engineering,2011,47(1):187-193 (in Chinese)
    [10] Dong H Y, Ke Y L. Study on machining deformation of aircraft monolithic component by FEM and experiment[J]. Chinese Journal of Aeronautics,2006,19(3):247-254
    [11] 董辉跃,柯映林,成群林.铝合金三维铣削加工的有限元模拟与分析[J].浙江大学学报,2006,40(5):759-762 Dong H Y, Ke Y L, Cheng Q L. Finite element simulation and analysis of aluminum alloy three-dimensional milling[J]. Journal of Zhejiang University,2006,40(5):759-762 (in Chinese)
    [12] Saffar J R, Razfar M R, Zarei O, et al. Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method[J]. Simulation Modelling Practice and Theory,2008,16(10):1677-1688
    [13] Leung S S, Dewes R C, Aspinwall D K. 3D FE modeling of high-speed ball nose end milling[J]. International Journal of Manufacturing Technology,2010,50:871-882
    [14] Yang K, Liang Y C, Zheng K N, et al.Tool edge radius effect on cutting temperature in micro-end-milling process[J]. International Journal of Manufacturing Technology,2011,52:905-912
    [15] 陈明,袁人炜,凡孝勇,等.三维有限元分析在高速铣削温度研究中应用[J].机械工程学报,2002,38(7):76-79 Chen M, Yuan R W, Fan X Y, et al. Application of three dimensional finite element analysis in cutting temperature for high speed milling[J]. Journal of Mechanical Engineering,2002,38(7):76-79 (in Chinese)
  • 加载中
计量
  • 文章访问数:  110
  • HTML全文浏览量:  14
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-08
  • 刊出日期:  2015-06-05

目录

    /

    返回文章
    返回