Volume 38 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
Wang Xinyi, Li Shujuan, Ma Weidong, Yang Leipeng. Improvement and Experimental Investigation of Adaptive Slicing Method in Fused Deposition Forming[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1231-1238. doi: 10.13433/j.cnki.1003-8728.20180297
Citation: Wang Xinyi, Li Shujuan, Ma Weidong, Yang Leipeng. Improvement and Experimental Investigation of Adaptive Slicing Method in Fused Deposition Forming[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1231-1238. doi: 10.13433/j.cnki.1003-8728.20180297

Improvement and Experimental Investigation of Adaptive Slicing Method in Fused Deposition Forming

doi: 10.13433/j.cnki.1003-8728.20180297
  • Received Date: 2018-07-04
  • Publish Date: 2019-08-05
  • At present, various adaptive slicing algorithms have been proposed in fused deposition forming in order to improve the disadvantages that the forming efficiency and forming accuracy cannot be balanced. Among them, the adaptive slicing algorithm based on the triangular face normal vector of STL model has the following problems, If the angle between the triangulation normal vector and the layering direction is too large or too small, this algorithm cannot achieve the adaptive change of the layer thickness as the angle between the normal vector and the layering direction changes. For this purpose, this paper applies normalization algorithms to improve it, and after equalizing the thickness of the model, determine the adaptive layer thickness of each layer according to the normalized principle. Secondly, based on MATLAB, this adaptive slicing algorithm and its improved algorithm are simulated. Finally, the experimental verification is performed on the fused deposition experimental platform. The experimental results show that comparing with the original algorithm, the improved adaptive slicing algorithm is significantly improved, and the part molding efficiency is increased by 22%, and the forming accuracy is increased by 29%, which is practical and effective.
  • loading
  • [1]
    Raviv D, Zhao W, McKnelly C, et al. Active printed materials for complex self-evolving deformations[J]. Scientific Reports, 2014, 4:7422
    [2]
    余东满, 李晓静, 高志华.快速成型技术工艺特点及影响精度的因素[J].机械设计与制造, 2011(7):112-114 doi: 10.3969/j.issn.1001-3997.2011.07.045

    Yu D M, Li X J, Gao Z H. Technical features and influencing factors of precision for rapid prototyping[J]. Machinery Design & Manufacture, 2011(7):112-114(in Chinese) doi: 10.3969/j.issn.1001-3997.2011.07.045
    [3]
    侯清泉, 刘春生.FDM快速成型机加工工艺方法研究[J].制造技术与机床, 2008(1):88-90 doi: 10.3969/j.issn.1005-2402.2008.01.029

    Hou Q Q, Liu C S. Research on manufacturing technology and method for FDM rapid prototyping machine[J]. Manufacturing Technology & Machine Tool, 2008(1):88-90(in Chinese) doi: 10.3969/j.issn.1005-2402.2008.01.029
    [4]
    龚运息, 陈晨, 夏名祥, 等.FDM 3D打印模型表面阶梯效应的分析[J].制造技术与机床, 2016(4):27-30 doi: 10.3969/j.issn.1005-2402.2016.04.010

    Gong Y X, Chen C, Xia M X, et al. Step effect analysis of FDM 3D printing model surface[J]. Manufacturing Technology & Machine Tool, 2016(4):27-30(in Chinese) doi: 10.3969/j.issn.1005-2402.2016.04.010
    [5]
    Pandey P M, Reddy N V, Dhande S G. Real time adaptive slicing for fused deposition modelling[J]. International Journal of Machine Tools and Manufacture, 2003, 43(1):61-71 doi: 10.1016/S0890-6955(02)00164-5
    [6]
    Zhao Z W, Luc Z. Adaptive direct slicing of the solid model for rapid prototyping[J]. International Journal of Production Research, 2000, 38(1):69-83. doi: 10.1080/002075400189581
    [7]
    Singamneni S, Joe R A, Huang B. Adaptive slicing for fused deposition modeling and practical implementation schemes[J]. Advanced Materials Research, 2012, 428:137-140 doi: 10.4028/www.scientific.net/AMR.428.137
    [8]
    王卫辰, 朱真才, 方亮, 等.基于3D CAD模型表面Z向特征曲线的自适应分层方法[J].机械科学与技术, 2010, 29(5):607-611 http://jxkx.cbpt.cnki.net/WKA2/WebPublication/paperDigest.aspx?paperID=6520de8d-8aab-41cd-b847-df608cabdec9

    Wang W C, Zhu Z C, Fang L, et al. Adaptively slicing 3D CAD model based on the key curve in Z direction[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(5):607-611(in Chinese) http://jxkx.cbpt.cnki.net/WKA2/WebPublication/paperDigest.aspx?paperID=6520de8d-8aab-41cd-b847-df608cabdec9
    [9]
    Dolenc A, Mäkelä I. Slicing procedures for layered manufacturing techniques[J]. Computer-Aided Design, 1994, 26(2):119-126 doi: 10.1016-0010-4485(94)90032-9/
    [10]
    Kulkarni P, Dutta D. An accurate slicing procedure for layered manufacturing[J]. Computer-Aided Design, 1996, 28(9):683-697 doi: 10.1016/0010-4485(95)00083-6
    [11]
    董未名, 严冬明, 周登文, 等.基于CAD模型的直接快速成型软件[J].计算机辅助设计与图形学学报, 2004, 16(3):360-367 doi: 10.3321/j.issn:1003-9775.2004.03.018

    Dong W M, Yan D M, Zhou D W, et al. CAD model driven rapid prototyping software[J]. Journal of Computer-Aided Design & Computer Graphics, 2004, 16(3):360-367(in Chinese) doi: 10.3321/j.issn:1003-9775.2004.03.018
    [12]
    Jamieson R, Hacker H. Direct slicing of CAD models for rapid prototyping[J]. Rapid Prototyping Journal, 1995, 1(2):4-12 doi: 10.1108/13552549510086826
    [13]
    蔡道生, 史玉升, 黄树槐.快速成形技术中基于切片轮廓信息的自适应分层算法[J].机械科学与技术, 2004, 23(7):849-851 doi: 10.3321/j.issn:1003-8728.2004.07.028

    Cai D S, Shi Y S, Huang S H. Adaptive delaminating algorithm based on profile information for rapid prototyping technology[J]. Mechanical Science and Technology, 2004, 23(7):849-851(in Chinese) doi: 10.3321/j.issn:1003-8728.2004.07.028
    [14]
    林俊义, 黄常标, 江开勇.基于STL面片法向矢量的自适应分层算法[J].制造技术与机床, 2003(11):67-68, 84 doi: 10.3969/j.issn.1005-2402.2003.11.026

    Lin J Y, Huang C B, Jiang K Y. Adaptive slicing arithmetic based on STL facet-vector model[J]. Manufacturing Technology & Machine Tool, 2003(11):67-68, 84(in Chinese) doi: 10.3969/j.issn.1005-2402.2003.11.026
    [15]
    Fu G Q, Fu J Z, Lin Z W, et al. A polygons Boolean operations-based adaptive slicing with sliced data for additive manufacturing[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017, 231(15):2783-2799 doi: 10.1177/0954406216640576
    [16]
    刘红霞.3D打印分层方向优化与分层算法研究[D].西安: 西安电子科技大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10701-1015437875.htm

    Liu H X. A study of optimization of slicing direction and slicing algorithm in 3D printing[D]. Xi'an: Xidian University, 2014(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10701-1015437875.htm
    [17]
    李嘉平, 党开放.一种改进的3D打印自适应分层算法研究[J].设备管理与维修, 2016(9):90-92 http://d.old.wanfangdata.com.cn/Periodical/sbglywx201609045

    Li J P, Dang K F. An improved 3D printing adaptive layering algorithm[J]. Plant Maintenance Engineering, 2016(9):90-92(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/sbglywx201609045
    [18]
    柳小桐.BP神经网络输入层数据归一化研究[J].机械工程与自动化, 2010(3):122-123, 126 doi: 10.3969/j.issn.1672-6413.2010.03.046

    Liu X T. Study on data normalization in bp neural network[J]. Mechanical Engineering & Automation, 2010(3):122-123, 126(in Chinese) doi: 10.3969/j.issn.1672-6413.2010.03.046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (417) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return