Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
HUAN Haixiang, WANG Mengxiong, ZHANG Ke. Study on Deformation Prediction and Cutting Parameters Optimization for Turning of Thin-walled Gear Spoke in Aerospace[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 103-109. doi: 10.13433/j.cnki.1003-8728.20230389
Citation: HUAN Haixiang, WANG Mengxiong, ZHANG Ke. Study on Deformation Prediction and Cutting Parameters Optimization for Turning of Thin-walled Gear Spoke in Aerospace[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 103-109. doi: 10.13433/j.cnki.1003-8728.20230389

Study on Deformation Prediction and Cutting Parameters Optimization for Turning of Thin-walled Gear Spoke in Aerospace

doi: 10.13433/j.cnki.1003-8728.20230389
  • Received Date: 2023-09-27
  • Publish Date: 2024-01-25
  • To fulfill the lightweight requirements of helicopter transmission systems, transmission gears as a critical component of helicopters, possess the noticeable characteristic of thin walls, which presents challenges in terms of severe deformation and the assurance of dimensional precision during the machining process. This article focuses on the study of thin-walled gear spoke plate made from high-strength medium alloy carburized steel. Using the ABAQUS finite element analysis software, a simulation study on the cutting process was conducted. By establishing a three-dimensional dynamic cutting simulation model, the relationship between the cutting forces and the cutting parameters on the parts in the machining was analyzed. Static simulation methods were used to analyze the influence of the superposition of cutting force and clamping force on the processing deformation of thin-walled spoke. Then range analysis was used to examine the simulation results. Finally, the experimental validation of the simulation results was carried out. The results indicate that in the static analysis of gear thin-walled spoke plate machining deformation, the axial deformation of the gear spoke plate is most significant, and the radial deformation is most prominent at the hub. Range analysis reveals that the optimal cutting parameters are the cutting speed of 150 m/min, the feed rate of 0.06 mm/r, and the cutting depth of 1.8 mm, with the prediction error for the maximum deformation of below 10%.
  • loading
  • [1]
    李琳, 解丽静, 王西彬, 等. 金属切削加工中难加工材料2Cr13的本构模型[J]. 中国机械工程, 2009, 20(20): 2466-2469. doi: 10.3321/j.issn:1004-132X.2009.20.017

    LI L, XIE L J, WANG X B, et al. Constitutive model of 2Cr13 for finite element analysis of chip formation process[J]. China Mechanical Engineering, 2009, 20(20): 2466-2469. (in Chinese) doi: 10.3321/j.issn:1004-132X.2009.20.017
    [2]
    薛祥友, 辛浩, 孙捷夫, 等. 航空铝合金薄壁件加工变形的分析与工艺方案设计[J]. 工具技术, 2023, 57(7): 125-128.

    XUE X Y, XIN H, SUN J F, et al. Analysis of machining deformation and process scheme design of aviation aluminum alloy thin wall parts[J]. Tool Engineering, 2023, 57(7): 125-128. (in Chinese)
    [3]
    王民, 刘宇男, 孙国智, 等. 初始残余应力和切削残余应力对薄壁件加工变形的影响[J]. 北京工业大学学报, 2017, 43(8): 1141-1147.

    WANG M, LIU Y N, SUN G Z, et al. Influence of initial residual stress and cutting stress on machining deformation of thin-walled parts[J]. Journal of Beijing University of Technology, 2017, 43(8): 1141-1147. (in Chinese)
    [4]
    MASOUDI S, AMINI S, SAEIDI E, et al. Effect of machining- induced residual stress on the distortion of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4): 597-608. doi: 10.1007/s00170-014-6281-x
    [5]
    KONG X N, TANG J Y, HU Z H, et al. Dynamic modeling and vibration analysis of spur gear system considering thin-walled gear and hollow shaft[J]. Mechanism and Machine Theory, 2023, 181: 105197. doi: 10.1016/j.mechmachtheory.2022.105197
    [6]
    王大勇. 航空薄辐板齿轮固有特性及稳态响应分析[J]. 机械传动, 2016, 40(5): 145-147.

    WANG D Y. Inherent characteristic and steady response analysis of aviation gear with thin-spoke[J]. Journal of Mechanical Transmission, 2016, 40(5): 145-147. (in Chinese)
    [7]
    廖凯, 张萧笛, 车兴飞, 等. 铝合金薄壁件加工变形的力学模型构建与分析[J]. 哈尔滨工业大学学报, 2018, 50(5): 166-172.

    LIAO K, ZHANG X D, CHE X F, et al. Construction and analysis of mechanic model of deformation for Al alloy thin-walled component[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 166-172. (in Chinese)
    [8]
    LI B H, GAO H J, DENG H B, et al. A machining deformation control method of thin-walled part based on enhancing the equivalent bending stiffness[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9): 2775-2790.
    [9]
    CHEN W F, XUE J B, TANG D B, et al. Deformation prediction and error compensation in multilayer milling processes for thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2009, 49(11): 859-864. doi: 10.1016/j.ijmachtools.2009.05.006
    [10]
    李承然, 唐进元. AISI9310钢薄辐板齿轮热处理变形与残余应力数值模拟及验证[J]. 材料热处理学报, 2022, 43(3): 151-159.

    LI C R, TANG J Y. Numerical simulation and verification of residual stress and distortion of AISI9310 steel thin web gear after heat treatment[J]. Transactions of Materials and Heat Treatment, 2022, 43(3): 151-159. (in Chinese)
    [11]
    丛靖梅, 莫蓉, 吴宝海, 等. 薄壁件残余应力变形仿真预测与切削参数优化[J]. 机械科学与技术, 2019, 38(2): 205-210. doi: 10.13433/j.cnki.1003-8728.20180322

    CONG J M, MO R, WU B H, et al. Prediction of deformation induced by residual stress in milling of thin-walled part and optimization of cutting parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2): 205-210. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180322
    [12]
    岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164.

    YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525164. (in Chinese)
    [13]
    陈伦旺. 闭式叶环插铣切削力建模及工艺优化研究[D]. 武汉: 华中科技大学, 2022.

    CHEN L W. Research on cutting force modeling and process optimization for plunge milling of closed blade rings[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese)
    [14]
    付中涛, 杨文玉, 张彦辉, 等. 基于切削力预测模型的复杂曲面铣削进给速度优化[J]. 中国科学: 技术科学, 2016, 46(7): 722-730.

    FU Z T, YANG W Y, ZHANG Y H, et al. Feedrate optimization of complex surface milling based on predictive model of cutting force[J]. Scientia Sinica Technologica, 2016, 46(7): 722-730. (in Chinese)
    [15]
    刘学杰. 薄壁零件加工的切削力模型分析与试验研究[D]. 南京: 南京航空航天大学, 2008.

    LIU X J. Study on cutting force model and experiment of thin-walled component[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese)
    [16]
    王斌, 范明星, 闫晨宵, 等. 曲线齿锥齿轮加工中的应力及形变分析[J]. 机械科学与技术, 2022, 41(7): 1070-1075. doi: 10.13433/j.cnki.1003-8728.20200634

    WANG B, FAN M X, YAN C X, et al. Analysis of stress and deformation in machining of split spiral bevel gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1070-1075. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200634
    [17]
    韩立彰, 葛广言, 杜正春, 等. 汽车变速箱阀体加工变形的来源分析及补偿[J]. 机械设计与研究, 2021, 37(2): 78-82.

    HAN L Z, GE G Y, DU Z C, et al. Source analysis and compensation of machining deformation of automobile gearbox valve body[J]. Machine Design & Research, 2021, 37(2): 78-82. (in Chinese)
    [18]
    WANG B, YAN C X, FENG P Y, et al. Prediction of machining deformation and reasonable design of gear blank for split straight bevel gear[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5): 2863-2875.
    [19]
    汤万昌. 我国航空发动机齿轮材料的现状[J]. 航空材料学报, 2003, 23(S1): 283.

    TANG W C. Current status of materials for aero-engine gears in China[J]. Journal of Aeronautical Materials, 2003, 23(S1): 283. (in Chinese)
    [20]
    LI J L, SUN L Y. Experimental and numerical investiga- tions of crack behavior and life prediction of 18Cr2Ni4WA steel subjected to repeated impact loading[J]. Engineering Failure Analysis, 2016, 65: 11-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views (92) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return