Volume 42 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
WANG Chao, XIAO Juliang, ZHENG Qianjian, LIU Haitao, HUANG Tian. Development of a Alexible Hybrid Robot Polishing System for Connecting Rod Molds[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2030-2039. doi: 10.13433/j.cnki.1003-8728.20230331
Citation: WANG Chao, XIAO Juliang, ZHENG Qianjian, LIU Haitao, HUANG Tian. Development of a Alexible Hybrid Robot Polishing System for Connecting Rod Molds[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2030-2039. doi: 10.13433/j.cnki.1003-8728.20230331

Development of a Alexible Hybrid Robot Polishing System for Connecting Rod Molds

doi: 10.13433/j.cnki.1003-8728.20230331
  • Received Date: 2023-04-27
  • Publish Date: 2023-12-25
  • In order to solve the problems of long manual polishing time and high labor intensity in the polishing process of connecting rod mold, a set of hybrid robot flexible polishing system was established. The material removal model considering the wear of polishing tools is established on this system, which can well predict the material removal amount under certain polishing parameters. Using the combination of UG and teaching methods to generate the processing trajectory. According to the control needs of the mold polishing force, a pneumatic control system is established, and the self-designed floating constant force polishing spindle combined with the PID control algorithm realizes the constant force polishing. Finally, the polishing experiment of automobile connecting rod mold is carried out on the flexible polishing system. The experimental results show that the flexible polishing system can better complete the polishing task of connecting rod mold and obtain better polishing effect.
  • loading
  • [1]
    HUSMANN S, STEMMLER S, HÄHNEL S, et al. Model predictive force control in grinding based on a lightweight robot[J]. IFAC-PapersOnLine, 2019, 52(13): 1779-1784. doi: 10.1016/j.ifacol.2019.11.459
    [2]
    HÄHNEL S, PINI F, LEALI F, et al. Reconfigurable robotic solution for effective finishing of complex surfaces[C]//Proceedings of the 23rd International Conference on Emerging Technologies and Factory Automation. Turin: IEEE, 2018: 1285-1290.
    [3]
    EL KHALICK MOHAMMAD A, WANG D W. Electrochemical mechanical polishing technology: recent developments and future research and industrial needs[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 1909-1924.
    [4]
    LUO X C, CHENG K, WEBB D, et al. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 515-528. doi: 10.1016/j.jmatprotec.2005.05.050
    [5]
    梁迎春, 陈国达, 孙雅洲, 等. 超精密机床研究现状与展望[J]. 哈尔滨工业大学学报, 2014, 46(5): 28-39.

    LIANG Y C, CHEN G D, SUN Y Z, et al. Research status and outlook of ultra-precision machine tool[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 28-39. (in Chinese)
    [6]
    ZHANG X J, ZHANG Z Y, ZHENG L G, et al. Manufacturing and testing SiC aspherical mirrors in space telescopes[C]//Proceedings of SPIE 6024, ICO20: Optical Devices and Instruments. Changchun: SPIE, 2005: 602402.
    [7]
    夏毅敏, 杨添任, 张刚强, 等. Nanosys-1000机床静压止推轴承流场分布规律及承载特性[J]. 光学 精密工程, 2013, 21(1): 144-150. doi: 10.3788/OPE.20132101.0144

    XIA Y M, YANG T R, ZHANG G Q, et al. Flow field distribution and bearing characteristics of hydrostatic thrust bearing in Nanosys-1000 machine[J]. Optics and Precision Engineering, 2013, 21(1): 144-150. (in Chinese) doi: 10.3788/OPE.20132101.0144
    [8]
    YAO Y S, MA Z, DING J T, et al. Heavy-calibre off-axis aspheric surface polishing by industrial robot[C]//Proceedings of SPIE 10838, 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Chengdu: SPIE, 2019: 1083803.
    [9]
    KHARIDEGE A, DU T T, ZHANG Y J. A practical approach for automated polishing system of free-form surface path generation based on industrial arm robot[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9-12): 3921-3934. doi: 10.1007/s00170-017-0726-y
    [10]
    LI J, GUAN Y S, CHEN H W, et al. A high-bandwidth end-effector with active force control for robotic polishing[J]. IEEE Access, 2020, 8: 169122-169135. doi: 10.1109/ACCESS.2020.3022930
    [11]
    LI J, ZHANG T, LIU X N, et al. A survey of robotic polishing[C]//Proceedings of 2018 IEEE International Conference on Robotics and Biomimetics. Kuala Lumpur: IEEE, 2019: 2125-2132.
    [12]
    WU J, GAO Y, ZHANG B B, et al. Workspace and dynamic Performance evaluation of the parallel manipulators in a spray-painting equipment[J]. Robotics and Computer-Integrated Manufacturing, 2017, 44: 199-207. doi: 10.1016/j.rcim.2016.09.002
    [13]
    WU J, YE H, YU G, et al. A novel dynamic evaluation method and its application to a 4-DOF parallel manipulator[J]. Mechanism and Machine Theory, 2022, 168: 104627. doi: 10.1016/j.mechmachtheory.2021.104627
    [14]
    LÓPEZ-CUSTODIO P C, FU R, DAI J S, et al. Compliance model of Exechon manipulators with an offset wrist[J]. Mechanism and Machine Theory, 2022, 167: 104558. doi: 10.1016/j.mechmachtheory.2021.104558
    [15]
    DONG C L, LIU H T, HUANG T, et al. A screw theory-based semi-analytical approach for elastodynamics of the tricept robot[J]. Journal of Mechanisms and Robotics, 2019, 11(3): 031005. doi: 10.1115/1.4043047
    [16]
    DONG C L, LIU H T, YUE W, et al. Stiffness modeling and analysis of a novel 5-DOF hybrid robot[J]. Mechanism and Machine Theory, 2018, 125: 80-93. doi: 10.1016/j.mechmachtheory.2017.12.009
    [17]
    ZHENG Q J, XIAO J L, WANG C, et al. A robotic polishing parameter optimization method considering time-varying wear[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(9-10): 6723-6738. doi: 10.1007/s00170-022-09788-8
    [18]
    樊成, 赵继, 张雷, 等. 移动抛光自由曲面材料去除的理论建模与试验研究[J]. 机械工程学报, 2014, 50(5): 173-181. doi: 10.3901/JME.2014.05.173

    FAN C, ZHAO J, ZHANG L, et al. Modeling and experimental study on the material removal in the velocity-dwell-mode polishing process[J]. Journal of Mechanical Engineering, 2014, 50(5): 173-181. (in Chinese) doi: 10.3901/JME.2014.05.173
    [19]
    于淼, 刘新星. 机器人抛磨自由曲面的分片路径规划研究[J]. 长春大学学报, 2019, 29(4): 6-9.

    YU M, LIU X X. Research on paths of fragmentation planning for robot polishing free-form surface[J]. Journal of Changchun University, 2019, 29(4): 6-9. (in Chinese)
    [20]
    XIAO J L, WANG Y P, Liu S J, et al. Grinding trajectory generation of hybrid robot based on cartesian direct teaching technology[J]. Industrial Robot, 2021, 48(3): 341-351. doi: 10.1108/IR-09-2020-0194
    [21]
    肖聚亮, 郑乾健, 王超, 等. 一种浮动恒力磨抛装置: 202210622258. X[P]. 2022-08-26.

    XIAO J L, ZHENG Q J, WANG C, et al. A floating constant force grinding and polishing device: 202210622258. X[P]. 2022-08-26. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article views (73) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return