Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
XU Feifei, LIU Qiguang, LYU Jie, JIN Xin. Study on Stress Relief Analysis and Deformation of Thin-walled Structural Parts in Milling by Using Finite Element Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 96-102. doi: 10.13433/j.cnki.1003-8728.20230287
Citation: XU Feifei, LIU Qiguang, LYU Jie, JIN Xin. Study on Stress Relief Analysis and Deformation of Thin-walled Structural Parts in Milling by Using Finite Element Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 96-102. doi: 10.13433/j.cnki.1003-8728.20230287

Study on Stress Relief Analysis and Deformation of Thin-walled Structural Parts in Milling by Using Finite Element Method

doi: 10.13433/j.cnki.1003-8728.20230287
  • Received Date: 2023-03-17
  • Publish Date: 2024-01-25
  • Thin-walled parts are widely used in aerospace applications, and their manufacturing accuracy directly determines the performance of the equipment in service. However, the effect of the heat treatment leads to the existence of residual stresses in thin-walled parts prior to machining. If not properly controlled, it is very easy to cause the part to exceed the tolerance. Therefore, for 7075 aluminum alloy sheet, the principle of residual stresses generated in the quenching and pre-stretching of the sheet is analyzed. Furthermore, the generation process of residual stresses in 7075 aluminum alloy blanks in the quenching process and pre-stretching is simulated by using the finite element method. It was found that the quenched residual stresses were reduced up to 91.2% when the blank was stretched by about 3% with a plastic strain of about 2.4%. According to the reduction of residual stresses, a simulation model for milling of thin-walled structural parts is established to simulate the milling deformation under the coupling effect of the multiple factors. The correctness of the simulation results is verified by using the milling experiments.
  • loading
  • [1]
    王长清, 张毅飞, 郑勇, 等. 钛合金薄壁件切削力与残余应力研究[J]. 重庆理工大学学报(自然科学), 2022, 36(3): 95-104.

    WANG C Q, ZHANG Y F, ZHENG Y, et al. Study on cutting force and residual stress of titanium alloy thin wall part[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(3): 95-104. (in Chinese)
    [2]
    王志学, 刘献礼, 李茂月, 等. 考虑力致变形影响的薄壁件铣削多点接触稳定性预测[J]. 机械工程学报, 2022, 58(17): 309-320.

    WANG Z X, LIU X L, LI M Y, et al. Multi-point contact stability prediction considering force-induced deformation effect in milling thin-Walled Parts[J]. Journal of Mechanical Engineering, 2022, 58(17): 309-320. (in Chinese)
    [3]
    李曦, 袁军堂, 汪振华, 等. 基于Rayleigh-Ritz法的钛合金薄壁件非均匀余量加工变形控制研究[J]. 中国机械工程, 2020, 31(11): 1378-1385.

    LI X, YUAN J T, WANG Z H, et al. Study on deformation control of thin-walled Titanium alloy parts in non-uniform allowance machining based on Rayleigh-Ritz method[J]. China Mechanical Engineering, 2020, 31(11): 1378-1385. (in Chinese)
    [4]
    SEDEH M R N, GHAEI A. The effects of machining residual stresses on springback in deformation machining bending mode[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(3): 1087-1098.
    [5]
    WANG Z H, WANG S B, WANG S L, et al. A novel surface residual stress monitoring method based on the power consumption of machine tool: A case study in 5-axis machining[J]. Journal of Manufacturing Processes, 2023, 86: 221-236. doi: 10.1016/j.jmapro.2022.12.057
    [6]
    姜建堂, 范丁歌, 赵熊爔, 等. 大型铝合金构件制造全过程残余应力预测与控制[J]. 中国材料进展, 2022, 41(11): 899-908.

    JIANG J T, FAN D G, ZHAO X X, et al. Whole process prediction-control of residual stress during the manufacturing of large aluminum alloy components[J]. Materials China, 2022, 41(11): 899-908. (in Chinese)
    [7]
    WANG Z Y, ZHOU J H, REN J X, et al. Predicting surface residual stress for multi-axis milling of Ti-6Al-4V titanium alloy in combined simulation and experiments[J]. Materials, 2022, 15(18): 6471. doi: 10.3390/ma15186471
    [8]
    刘瑶琼, 龚海, 孙燕杰. 7050铝合金厚板弹性模量分布差异及其对预拉伸后残余应力的影响[J]. 热加工工艺, 2019, 48(24): 25-29.

    LIU Y Q, GONG H, SUN Y J. Distribution difference of elastic modulus of 7050 aluminum alloy thick plate and its influence on residual stress[J]. Hot Working Technology, 2019, 48(24): 25-29. (in Chinese)
    [9]
    KOC M, CULP J, ALTAN T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 342-354. doi: 10.1016/j.jmatprotec.2006.02.007
    [10]
    TANNER D A, ROBINSON J S. Residual stress prediction and determination in 7010 aluminum alloy forgings[J]. Experimental Mechanics, 2000, 40(1): 75-82. doi: 10.1007/BF02327551
    [11]
    翟瑞志, 尹慧, 滕树满. 大型7050铝合金自由锻件淬火残余应力消减研究[J]. 型铸锻件, 2022(4): 56-58.

    ZHAI R Z, YIN H, TENG S M. Study on quenching residual stress reduction of large free forgings of aluminum alloy 7050[J]. Heavy Casting and Forging, 2022(4): 56-58. (in Chinese)
    [12]
    李晨, 张新全, 谢林军, 等. 淬火水温对7050铝合金残余应力及力学性能的影响[J]. 轻合金加工技术, 2022, 50(5): 60-64.

    LI C, ZHANG X Q, XIE L J, et al. Effect of water quenching temperature on residual stress and mechanical properties of 7050 aluminum alloy[J]. Light Alloy Fabrication Technology, 2022, 50(5): 60-64. (in Chinese)
    [13]
    GUO H, ZUO D W, WU H B, et al. Prediction on milling distortion for aero-multi-frame parts[J]. Materials Science and Engineering: A, 2009, 499(1-2): 230-233.
    [14]
    RAI J K, XIROUCHAKIS P. Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6): 629-643.
    [15]
    王祝堂, 田荣璋. 铝合金及其加工手册[M]. 长沙: 中南工业大学出版社, 1989.

    WANG Z T, TIAN R Z. Aluminum alloy and handbook of machining[M]. Changsha: Central South University of Technology Press, 1989. (in Chinese)
    [16]
    TANNER D A, ROBINSON J S. Modelling stress reduction techniques of cold compression and stretching in wrought aluminium alloy products[J]. Finite Elements in Analysis and Design, 2003, 39(5-6): 369-386.
    [17]
    李利. 铝合金板淬火残余应力的拉伸消除方法[J]. 轻合金加工技术, 1999, 27(5): 16-18.

    LI L. Stretch method to relieve residual stress in a aluminium alloy plate[J]. Light Alloy Fabrication Technology, 1999, 27(5): 16-18. (in Chinese)
    [18]
    吴红兵. 航空框类整体结构件铣削加工变形的数值模拟与实验研究[D]. 杭州: 浙江大学, 2008.

    WU H B. Study on numerical simulation and experiment of milling process for aerospace monolithic components[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
    [19]
    郭魂. 航空多框整体结构件铣削变形机理与预测分析研究[D]. 南京: 南京航空航天大学, 2005.

    GUO H. Study on mechanism and prediction analysis of machining distortion for aero-multi-frame monolithic structure parts[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005. (in Chinese)
    [20]
    徐飞飞. 整体薄壁结构件残余应力预测与铣削加工变形研究[D]. 大连: 大连理工大学, 2010.

    XU F F. Study on prediction of residual stress and machining distortion for monolithic thin-walled structural components[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
    [21]
    董辉跃, 柯映林, 孙杰, 等. 铝合金厚板淬火残余应力的有限元模拟及其对加工变形的影响[J]. 航空学报, 2004, 25(4): 429-432.

    DONG H Y, KE Y L, SUN J, et al. Finite element method simulation for residual stress in quenched aluminum alloy thick-plate and its effect on machining distortion[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4): 429-432. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (79) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return