Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
GUO Guangyu, CHEN Qingshan, GAO Hong. Study on Deformation Driving Mechanism of Aircraft Wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 540-545. doi: 10.13433/j.cnki.1003-8728.20220250
Citation: GUO Guangyu, CHEN Qingshan, GAO Hong. Study on Deformation Driving Mechanism of Aircraft Wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 540-545. doi: 10.13433/j.cnki.1003-8728.20220250

Study on Deformation Driving Mechanism of Aircraft Wing

doi: 10.13433/j.cnki.1003-8728.20220250
  • Received Date: 2021-12-31
  • Publish Date: 2024-03-25
  • For the purpose of optimizing the aerodynamic characteristics and improving the flight efficiency of aircraft, a variable camber wing with multi-stage linkage driving mechanism is studied. The aerodynamic characteristics of the wing at the maximum deformation angle are studied by the fluid analysis function of ANSYS. The structural strength of the driving mechanism under the limit load condition is studied by the static analysis function of ANSYS. The motion of the driving mechanism is studied through simulation analysis and prototype test. The results indicate that the maximum lift coefficient of the deformed wing is 1.4, and the maximum aerodynamic pressure is 1 078 Pa, which is less than the yield aerodynamic pressure of the lower surface of 4 916 Pa. The maximum stress of the driving mechanism is 37.3 MPa, which is less than the structural yield strength of 55.2 MPa. The wing deformation angle is greater than ±25°, which meets the requirement of improving aerodynamic characteristics of aircraft.
  • loading
  • [1]
    白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443.

    BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443. (in Chinese)
    [2]
    BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [3]
    NIU W, ZHANG Y F, CHEN H X, et al. Numerical study of a supercritical airfoil/wing with variable-camber technology[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1850-1866. doi: 10.1016/j.cja.2020.01.008
    [4]
    ZHAO A M, ZOU H, JIN H C, et al. Structural design and verification of an innovative whole adaptive variable camber wing[J]. Aerospace Science and Technology, 2019, 89: 11-18. doi: 10.1016/j.ast.2019.02.032
    [5]
    许云涛. 智能变形飞行器发展及关键技术研究[J]. 战术导弹技术, 2017(2): 26-33. doi: 10.16358/j.issn.1009-1300.2017.02.05

    XU Y T. Research on the development and key technology of smart morphing aircraft[J]. Tactical Missile Technology, 2017(2): 26-33. (in Chinese) doi: 10.16358/j.issn.1009-1300.2017.02.05
    [6]
    景藜, 张永红, 葛文杰, 等. 基于多目标载荷路径法的形状变形机翼后缘柔性机构拓扑优化[J]. 机械科学与技术, 2010, 29(10): 1420-1425. doi: 10.13433/j.cnki.1003-8728.2010.10.023

    JING L, ZHANG Y H, GE W J, et al. Topology optimization for shape morphing compliant trailing edge using multi-objective load path approach[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(10): 1420-1425. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2010.10.023
    [7]
    GUO L Q, TAO J, WANG C, et al. Fuel efficiency optimization of high-aspect-ratio aircraft via variable camber technology considering aeroelasticity[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(7): 782-793.
    [8]
    李小飞, 张梦杰, 王文娟, 等. 变弯度机翼技术发展研究[J]. 航空科学技术, 2020, 31(2): 12-24. doi: 10.19452/j.issn1007-5453.2020.02.002

    LI X F, ZHANG M J, WANG W J, et al. Research on variable camber wing technology development[J]. Aeronautical Science & Technology, 2020, 31(2): 12-24. (in Chinese) doi: 10.19452/j.issn1007-5453.2020.02.002
    [9]
    ELZEY D M, SOFLA A Y N, WADLEY H N G. A bio-inspired high-authority actuator for shape morphing structures[C]//Proceedings of SPIE 5053, Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics. San Diego, CA: SPIE, 2003: 92-100.
    [10]
    杨媛, 徐志伟. 基于SMA的飞行器变体机翼驱动结构研究[J]. 兵器材料科学与工程, 2010, 33(1): 25-30. doi: 10.3969/j.issn.1004-244X.2010.01.007

    YANG Y, XU Z W. Research of the airfoil structure based on a shape-memory alloy actuated morphing wing[J]. Ordnance Material Science and Engineering, 2010, 33(1): 25-30. (in Chinese) doi: 10.3969/j.issn.1004-244X.2010.01.007
    [11]
    PREVITALI F, MOLINARI G, ARRIETA A F, et al. Design and experimental characterisation of a morphing wing with enhanced corrugated skin[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(2): 278-292. doi: 10.1177/1045389X15595296
    [12]
    ARENA M, AMOROSO F, PECORA R, et al. Numerical and experimental validation of a full scale servo-actuated morphing aileron model[J]. Smart Materials and Structures, 2018, 27(10): 105034. doi: 10.1088/1361-665X/aad7d9
    [13]
    王帮峰, 牟常伟, 周春华. 用于变体机翼的波纹式纤维增强复合材料蒙皮基体变形特性研究[J]. 机械科学与技术, 2011, 30(7): 1047-1050. doi: 10.13433/j.cnki.1003-8728.2011.07.031

    WANG B F, MOU C W, ZHOU C H. Tensile deformation properties of wave style fiber reinforced composite skin for a morphing wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(7): 1047-1050. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2011.07.031
    [14]
    谭巧. 形状记忆环氧聚合物及其复合材料的典型力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    TAN Q. Typical mechanical behavior of epoxy shape memory polymer and its composite[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [15]
    尹维龙, 石庆华. 变体飞行器蒙皮材料与结构研究综述[J]. 航空制造技术, 2017, 60(17): 24-29. doi: 10.16080/j.issn1671-833x.2017.17.024

    YIN W L, SHI Q H. Review of material and structure for morphing aircraft skin[J]. Aeronautical Manufacturing Technology, 2017, 60(17): 24-29. (in Chinese) doi: 10.16080/j.issn1671-833x.2017.17.024
    [16]
    YOKOZEKI T, SUGIURA A, HIRANO Y. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3): 1023-1029. doi: 10.2514/1.C032573
    [17]
    AMENDOLA G, DIMINO I, CONCILIO A, et al. A linear guide-based actuation concept for a novel morphing aileron[J]. The Aeronautical Journal, 2019, 123(1265): 1075-1097. doi: 10.1017/aer.2019.35
    [18]
    RIVERO A E, WEAVER P M, COOPER J E, et al. Parametric structural modelling of fish bone active camber morphing aerofoils[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9): 2008-2026. doi: 10.1177/1045389X18758182
    [19]
    艾森, 聂小华, 王立凯, 等. 利用精细有限元模型实现大型机翼尺寸优化设计[J]. 机械科学与技术, 2021, 40(3): 487-492.

    AI S, NIE X H, WANG L K, et al. Optimization design of large scale wing size via refined finite element model[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 487-492. (in Chinese)
    [20]
    TAKAHASHI H, YOKOZEKI T, HIRANO Y. Development of variable camber wing with morphing leading and trailing sections using corrugated structures[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(20): 2827-2836. doi: 10.1177/1045389X16642298
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (30) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return