Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
QIN Qiulei, WANG Ruijie, WU Longgang. Analysis of Fatigue Life for Multi-spot Welding[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 90-95. doi: 10.13433/j.cnki.1003-8728.20220193
Citation: QIN Qiulei, WANG Ruijie, WU Longgang. Analysis of Fatigue Life for Multi-spot Welding[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 90-95. doi: 10.13433/j.cnki.1003-8728.20220193

Analysis of Fatigue Life for Multi-spot Welding

doi: 10.13433/j.cnki.1003-8728.20220193
  • Received Date: 2021-09-23
  • Publish Date: 2024-01-25
  • According to the constant amplitude fatigue test results of ST12 steel double-spot and three-spot tensile shear resistance spot welded specimens, the fatigue lives were predicted by using the notch stress method and equivalent structure stress method respectively. While using notch stress method, the three-dimensional solid finite element models for double-spot and three-spot tensile shear spot weld according to the actual specimen size and the recommendation of International institute of welding(IIW), the von Mises maximum stress change regime were obtained from the finite element results, the fatigue lives were predicted according to the S-N curve in the IIW recommended standard and while using the structural stress method, a hybrid model for beam and shell stress analysis, then the fatigue lives were predicted according to the main S-N curve. The results showed that the results predicted by using the notch stress method and the equivalent structural stress method are well correlated relatively to the actual lives of the specimen within low cycle regime, where the results by using the equivalent structural stress method are closer to the experimental results.
  • loading
  • [1]
    ASLANLAR S, OGUR A, OZSARAC U, et al. Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding[J]. Materials & Design, 2008, 29(7): 1427-1431.
    [2]
    CHO Y, RHEE S. Quality estimation of resistance spot welding by using pattern recognition with neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(2): 330-334. doi: 10.1109/TIM.2003.822713
    [3]
    ESMAEILI F, RAHMANI A, BARZEGAR S, et al. Prediction of fatigue life for multi-spot welded joints with different arrangements using different multiaxial fatigue criteria[J]. Materials & Design, 2015, 72: 21-30.
    [4]
    胡鑫, 严仁军, 谌伟, 等. 基于缺口应力法的IIW多轴疲劳准则分析[J]. 焊接学报, 2019, 40(7): 77-81.

    HU X, YAN R J, SHEN W, et al. Research on IIW multiaxial fatigue criterion based on notch stress approach[J]. Transactions of the China Welding Institution, 2019, 40(7): 77-81. (in Chinese)
    [5]
    刘旭, 周春平, 张开林, 等. 基于缺口应力法的转向架焊接接头疲劳性能分析[J]. 铁道学报, 2017, 39(3): 42-48.

    LIU X, ZHOU C P, ZHANG K L, et al. Fatigue performance analysis of bogie welded joints based on notch stress method[J]. Journal of the China Railway Society, 2017, 39(3): 42-48. (in Chinese)
    [6]
    WEI C J, KANG H T. Fatigue life prediction of spot-welded joints with a notch stress approach[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102491. doi: 10.1016/j.tafmec.2020.102491
    [7]
    龚琼琼, 王成, 王效贵. 基于八节点二次壳单元的等效结构应力法[J]. 浙江工业大学学报, 2014, 42(5): 554-558. doi: 10.3969/j.issn.1006-4303.2014.05.018

    GONG Q Q, WANG C, WANG X G. Equivalent structural stress method based on eight-node second-order shell element[J]. Journal of Zhejiang University of Technology, 2014, 42(5): 554-558. (in Chinese) doi: 10.3969/j.issn.1006-4303.2014.05.018
    [8]
    李薇, 王悦东. 点焊结构疲劳寿命预测的新方法研究[J]. 农业装备与车辆工程, 2019, 57(3): 27-30.

    LI W, WANG Y D. New method for prediction of fatigue life of spot-welding structure[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(3): 27-30. (in Chinese)
    [9]
    FRICKE W. IIW recommendations for the fatigue assessment of welded structures by notch stress analysis: IIW-2006-09[M]. [S.L. ]: Woodhead Publishing, 2012.
    [10]
    杨广雪, 刘志明, 李广全, 等. 基于等效结构应力法的焊接构架疲劳损伤评估[J]. 铁道学报, 2020, 42(7): 73-79.

    YANG G X, LIU Z M, LI G Q, et al. Fatigue damage assessment of welded frame on equivalent structural stress method[J]. Journal of the China Railway Society, 2020, 42(7): 73-79. (in Chinese)
    [11]
    廖小伟, 王元清, 宗亮, 等. 基于有效缺口应力法的钢桥焊接细节疲劳分析[J]. 浙江大学学报(工学版), 2017, 51(1): 1-8.

    LIAO X W, WANG Y Q, ZONG L, et al. Fatigue analysis of typical welded joints of steel bridges using effective notch stress approach[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(1): 1-8. (in Chinese)
    [12]
    SONSINO C M. A consideration of allowable equivalent stresses for fatigue design of welded joints according to the notch stress concept with the reference radii rref=1.00 and 0.05 mm[J]. Welding in the World, 2009, 53(3-4): 64-75.
    [13]
    李向伟, 兆文忠. 基于Verity方法的焊缝疲劳评估原理及验证[J]. 焊接学报, 2010, 31(7): 9-12.

    LI X W, ZHAO W Z. Weld fatigue assessment and verifica-tion based on Verity method[J]. Transactions of the China Welding Institution, 2010, 31(7): 9-12. (in Chinese)
    [14]
    KYUBA H, DONG P S. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint[J]. International Journal of Fatigue, 2005, 27(1): 85-94.
    [15]
    DONG P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876.
    [16]
    DONG P S, HONG J K, DE JESUS A M P. Analysis of recent fatigue data using the structural stress procedure in ASME Div 2 rewrite[J]. Journal of Pressure Vessel Technology, 2007, 129(3): 355-362.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (68) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return