Volume 41 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
WANG Yang, LI Zhipeng, TANG Xinyi. Simulation of Gas-liquid Two-phase Circulation Characteristics of Torque Limited Hydrodynamic Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1376-1380. doi: 10.13433/j.cnki.1003-8728.20200476
Citation: WANG Yang, LI Zhipeng, TANG Xinyi. Simulation of Gas-liquid Two-phase Circulation Characteristics of Torque Limited Hydrodynamic Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1376-1380. doi: 10.13433/j.cnki.1003-8728.20200476

Simulation of Gas-liquid Two-phase Circulation Characteristics of Torque Limited Hydrodynamic Coupling

doi: 10.13433/j.cnki.1003-8728.20200476
  • Received Date: 2020-10-26
  • Publish Date: 2022-09-05
  • In order to study the gas-liquid two-phase distribution and the torque characteristics of the torque limited hydrodynamic coupling, the YOX500 torque limited hydrodynamic coupling is used as the analysis model. The VOF two-phase flow model, the realizable k-ε turbulence model and the PISO algorithm are used to perform the transient simulations of the internal flow field of the hydrodynamiccoupling under different filling rates and different working conditions. The results show that as the speed ratio decreases, the internal circulation of the hydrodynamiccoupling gradually changes from a small circulation to a large one. Under the condition of 80% filling rate, the gas-liquid two-phase distribution to the suction surface and pressure surface of the impeller blade is basically consistent with the experimental results, thus proving the effectiveness of the method. At a high-speed ratio, the torque characteristics are consistent with the experimental results. At a low speed ratio, the error is large; therefore the method is no longer applicable.
  • loading
  • [1]
    刘应诚. 液力偶合器应用与节能500问[M]. 北京: 机械工业出版社, 2014

    LIU Y C. 500 Questions about the application and energy conservation of fluid coupling[M]. Beijing: Mechanical Industry Press, 2014 (in Chinese)
    [2]
    刘应诚, 杨乃乔. 液力偶合器应用与节能技术[M]. 北京: 化学工业出版社, 2006

    LIU Y C, YANG N Q. The application of aydraulic coupling and energy-saving technology[M]. Beijing: Chemical Industry Press, 2006 (in Chinese)
    [3]
    DONG Y, LAKSHMINARAYANA B. Rotating probe measurements of the pump passage flow field in an automotive torque converter[J]. Journal of Fluids Engineering, 2001, 123(1): 81-91 doi: 10.1115/1.1341202
    [4]
    CHRISTEN M, KEMCHEN R. Fluid velocity in constant fill turbo couplings: Measurements Using Laser Doppler Velocimetry[J]. Antriebstechnik, 2001, 40: 71-74
    [5]
    HAMPEL U, HOPPE D, DIELE K H, et al. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2-3): 85-90 doi: 10.1016/j.flowmeasinst.2004.10.001
    [6]
    DA SILVA M J, LU Y, SÜHNEL T, et al. Autonomous planar conductivity array sensor for fast liquid distribution imaging in a fluid coupling[J]. Sensors and Actuators A:Physical, 2008, 147(2): 508-515 doi: 10.1016/j.sna.2008.06.019
    [7]
    柴博森, 刘春宝. 基于粒子图像测速技术的液力偶合器漩涡流动特性研究[J]. 农业工程学报, 2013, 29(23): 86-92 doi: 10.3969/j.issn.1002-6819.2013.23.012

    CHAI B S, LIU C B. Study on vortex flow characteristics of hydrodynamic coupling based on particle image velocimetry technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23): 86-92 (in Chinese) doi: 10.3969/j.issn.1002-6819.2013.23.012
    [8]
    柴博森, 项玥, 刘勇, 等. 基于PIV试验的水介质液力偶合器涡轮流场仿真评价[J]. 华南理工大学学报(自然科学版), 2018, 46(5): 125-134

    CHAI B S, XIANG Y, LIU Y, et al. Evaluation of flow field simulation of turbine in water-medium hydrodynamic coupling based on PIV experiment[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(5): 125-134 (in Chinese)
    [9]
    卢秀泉, 胡春玉, 柴亚龙, 等. 动态调速工况液力偶合器瞬态流场PIV试验[J]. 华中科技大学学报(自然科学版), 2019, 47(4): 50-54

    LU X Q, HU C Y, CHAI Y L, et al. Experiment of transient flow field of hydrodynamic coupling under dynamic speed regulation with PIV[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2019, 47(4): 50-54 (in Chinese)
    [10]
    范丽丹, 马文星, 柴博森, 等. 液力偶合器气液两相流动的数值模拟与粒子图像测速[J]. 农业工程学报, 2011, 27(11): 66-70 doi: 10.3969/j.issn.1002-6819.2011.11.013

    FAN L D, MA W X, CHAI B S, et al. Numerical simulation and particle image velocimetry for gas-liquid two-phase flow in hydraulic couplings[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(11): 66-70 (in Chinese) doi: 10.3969/j.issn.1002-6819.2011.11.013
    [11]
    BAI L, MITRA N K, FIEBIG M. Computation of unsteady 3D turbulent flow and torque transmission in fluid couplings[C]//Fourteenth International Conference on Numerical Methods in Fluid Dynamics. Heidelberg: Springer, 1995: 435-440
    [12]
    HUITENGA H, MITRA N K. Improving startup behavior of fluid couplings through modification of runner geometry: part I-fluid flow analysis and proposed improvement[J]. Journal of Fluid Engineering, 2000, 122(4): 683-688 doi: 10.1115/1.1319501
    [13]
    HUITENGA H, MITRA N K. Improving startup behavior of fluid couplings through modification of runner geometry: Part II-modification of runner geometry and its effects on the operation characteristics[J]. Journal of Fluid Engineering, 2000, 122(4): 689-693 doi: 10.1115/1.1319502
    [14]
    张嘉华, 崔红伟, 王腾, 等. 调速型液力偶合器两相环流特性预测[J]. 液压与气动, 2020(4): 73-81 doi: 10.11832/j.issn.1000-4858.2020.04.012

    ZHANG J H, CUI H W, WANG T, et al. Two-phase circulation characteristics prediction of variable speed hydrodynamic coupling[J]. Chinese Hydraulics & Pneumatics, 2020(4): 73-81 (in Chinese) doi: 10.11832/j.issn.1000-4858.2020.04.012
    [15]
    赵继云, 张德生. 液力偶合器气液界面追踪数值模拟[J]. 机械工程学报, 2012, 48(4): 182-187 doi: 10.3901/JME.2012.04.182

    ZHAO J Y, ZHANG D S. Numerical simulation of water-air interface tracking in hydrodynamic coupling[J]. Journal of Mechanical Engineering, 2012, 48(4): 182-187 (in Chinese) doi: 10.3901/JME.2012.04.182
    [16]
    卢秀泉, 马文星, 李雪松, 等. 限矩型液力偶合器气-液两相环流特性仿真预测[J]. 农业工程学报, 2014, 30(9): 27-34 doi: 10.3969/j.issn.1002-6819.2014.09.004

    LU X Q, MA W X, LI X S, et al. Simulation and prediction on fluid-gas circulation characteristics of torque limited hydrodynamic coupling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9): 27-34 (in Chinese) doi: 10.3969/j.issn.1002-6819.2014.09.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (103) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return