Volume 37 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Yu Shengdong, Ma Jinyu, Chen Dalu, Kang Shengzheng. Robust Finite-time Motion Control for a Class of Smart Piezoelectric Actuators with Unknown Nonlinear Hysteresis[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1183-1189. doi: 10.13433/j.cnki.1003-8728.20180136
Citation: Yu Shengdong, Ma Jinyu, Chen Dalu, Kang Shengzheng. Robust Finite-time Motion Control for a Class of Smart Piezoelectric Actuators with Unknown Nonlinear Hysteresis[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1183-1189. doi: 10.13433/j.cnki.1003-8728.20180136

Robust Finite-time Motion Control for a Class of Smart Piezoelectric Actuators with Unknown Nonlinear Hysteresis

doi: 10.13433/j.cnki.1003-8728.20180136
  • Received Date: 2017-11-13
  • Publish Date: 2018-08-05
  • A new robust control strategy is presented for a class of nonlinear piezoelectric actuators subject to external disturbances, hysteresis and other time-varying uncertainties. Based on the fast nonsingular terminal sliding mode control, the proposed controller incorporates the time delay estimation, and can achieve online estimation and compensation for the time-varying system uncertainties without system model. The robust exact differentiator is introduced to estimate the velocity and acceleration information online, which overcomes the limitation of only position measurements. Compared with the traditional time delay control, the proposed control law uses the nonlinear sliding mode surface such that the finite-time convergence of tracking error can be guaranteed. Finally, a Lyapunov function is chosen to prove the stability of controlled system. Theoretical analysis and simulation results show that the proposed control strategy can meet the requirements of high-precision robust tracking in micro/nano positioning applications.
  • loading
  • [1]
    Cao Y, Chen X B. A survey of modeling and control issues for piezo-electric actuators[J]. Journal of Dynamic Systems, Measurement, and Control, 2015,137(1):014001
    [2]
    李杨民,汤晖,徐青松,等.面向生物医学应用的微操作机器人技术发展态势[J].机械工程学报,2011,47(23):1-13 Li Y M, Tang H, Xu Q S, et al. Development status of micromanipulator technology for biomedical applications[J]. Journal of Mechanical Engineering, 2011,47(23):1-13(in Chinese)
    [3]
    Peng J Y, Chen X B. A survey of modeling and control of piezoelectric actuators[J]. Modern Mechanical Engineering, 2013,3(1):28248
    [4]
    Gu G Y, Zhu L M, Su C Y, et al. Modeling and control of piezo-actuated nanopositioning stages:a survey[J]. IEEE Transactions on Automation Science and Engineering, 2016,13(1):313-332
    [5]
    屈文忠,姚振汉,张振家.具有迟滞和蠕变特性压电作动器的模糊自适应逆控制方法[J].机械科学与技术,2005,24(10):1230-1232 Qu W Z, Yao Z H, Zhang Z J. Adaptive fuzzy inverse control of piezoelectric actuator with hysteresis and creep[J]. Mechanical Science and Technology, 2005,24(10):1230-1232(in Chinese)
    [6]
    Liaw H C, Shirinzadeh B, Smith J. Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/Nano manipulation[J]. IEEE Transactions on Control Systems Technology, 2008,16(4):826-833
    [7]
    张利军,杨立新,郭立东,等.压电陶瓷驱动平台自适应输出反馈控制[J].自动化学报,2012,38(9):1550-1556 Zhang L J, Yang L X, Guo L D, et al. Adaptive output feedback control for piezoactuator-driven stage[J]. Acta Automatica Sinica, 2012,38(9):1550-1556(in Chinese)
    [8]
    Wu Y, Zou Q Z. Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators[J]. IEEE Transactions on Control Systems Technology, 2007,15(5):936-944
    [9]
    Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[J]. IEEE Transactions on Automatic Control, 1994,39(12):2464-2469
    [10]
    Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002,38(12):2159-2167
    [11]
    Yu S H, Yu X H, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005,41(11):1957-1964
    [12]
    Nekoukar V, Erfanian A. Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems[J]. Fuzzy Sets and Systems, 2011,179(1):34-49
    [13]
    Youcef-Toumi K, Ito O. A time delay controller for systems with unknown dynamics[J]. Journal of Dynamic Systems, Measurement, and Control, 1990,112(1):133-142
    [14]
    Wang Y Y, Luo G S, Gu L Y, et al. Fractional-order nonsingular terminal sliding mode control of hydraulic manipulators using time delay estimation[J]. Journal of Vibration and Control, 2016,22(19):3998-4011
    [15]
    Jin M L, Lee J, Ahn K K. Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation[J]. IEEE/ASME Transactions on Mechatronics, 2015,20(2):899-909
    [16]
    Jin M L, Lee J, Chang P H, et al. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control[J]. IEEE Transactions on Industrial Electronics, 2009,56(9):3593-3601
    [17]
    Levant A. Higher-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 2003,76(9-10):924-941
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1048) PDF downloads(737) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return