Volume 37 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Lu Xiong, Li Shujuan, Xin Bin, Li Zhipeng. Multi-objective Optimization for WEDM of Single-crystal Silicon[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1253-1259. doi: 10.13433/j.cnki.1003-8728.20180030
Citation: Lu Xiong, Li Shujuan, Xin Bin, Li Zhipeng. Multi-objective Optimization for WEDM of Single-crystal Silicon[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1253-1259. doi: 10.13433/j.cnki.1003-8728.20180030

Multi-objective Optimization for WEDM of Single-crystal Silicon

doi: 10.13433/j.cnki.1003-8728.20180030
  • Received Date: 2017-06-06
  • Publish Date: 2018-08-05
  • It is difficult to obtain an effective mathematical model for cutting mechanism by using theoretical analysis. This paper introduces the experimental method of central composite design (CCD), and establishes the experimental scheme of four factors and three levels for single-crystal Silicon wire cutting. The second order mathematical model for single-crystal Silicon surface roughness and material removal rate, such as no-load voltage, pulse width, pulse interval and wire speed, was established by using response surface methodology (RSM). The results show that the prediction model has good fittness and adaptability. Non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) is used to solve the optimization problem, and the optimal Pareto solution set is obtained. The optimization of the process parameters is carried out to improve the processing quality and material removal rate of the surface of single-crystal Silicon. Experiments show that the present model is accurate for predicting the surface roughness and material removal rate, and which can realize the prediction of roughness and material removal rate during the wire cutting of the corresponding semiconductor materials.
  • loading
  • [1]
    Spur G, Scho··nbeck J. Anode erosion in Wire-EDM-a theoretical model[J]. CIRP Annals, 1993,42(1):253-256
    [2]
    Soundararajan R, Ramesh A, Mohanraj N, et al. An investigation of material removal rate and surface roughness of squeeze casted A413 alloy on WEDM by multi response optimization using RSM[J]. Journal of Alloys and Compounds, 2016,685:533-545
    [3]
    Nourbakhsh F, Rajurkar K P, Malshe A P, et al. Wire electro-discharge machining of titanium alloy[J]. Procedia Cirp, 2013,5:13-18
    [4]
    Mandal D, Pal S K, Saha P. Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-Ⅱ[J]. Journal of Materials Processing Technology, 2007,186(1-3):154-162
    [5]
    Chandrasekaran M, George J, Arunachalam R M, et al. Multi-objective parametric optimization for non-conventional machining of Inconel 825-for an industrial application[J]. Journal of Scientific and Industrial Research, 2017,76:314-319
    [6]
    王小军,孙振亚.硅片切割技术的现状和发展趋势[J].超硬材料工程,2011,23(6):19-23 Wang X J, Sun Z Y. Research situation and development trends of silicon wafer cutting technology[J]. Superhard Material Engineering, 2011,23(6):19-23(in Chinese)
    [7]
    Luo Y F, Chen C G, Tong Z F. Investigation of silicon wafering by wire EDM[J]. Journal of Materials Science, 1992,27(21):5805-5810
    [8]
    Saleh T, Rasheed A N, Muthalif A G A. Experimental study on improving μ-WEDM and μ-EDM of doped silicon by temporary metallic coating[J]. The International Journal of Advanced Manufacturing Technology, 2015,78(9-12):1651-1663
    [9]
    Yeh C C, Wu K L, Lee J W, et al. Study on surface characteristics using phosphorous dielectric on wire electrical discharge machining of polycrystalline silicon[J]. The International Journal of Advanced Manufacturing Technology, 2013,69(1-4):71-80
    [10]
    Yu P H, Wu K L, Lee S M, et al. Effect of voltage supply mode on electrolytic machining of polycrystalline silicon[J]. Materials and Manufacturing Processes, 2011,26(12):1459-1465
    [11]
    Yu P H, Hung J C, Lee H M, et al. Machining characteristics of magnetic force-assisted electrolytic machining for polycrystalline silicon[J]. Advanced Materials Research, 2011,325:523-529
    [12]
    Luis C J, Puertas I, Villa G. Material removal rate and electrode wear study on the EDM of silicon carbide[J]. Journal of Materials Processing Technology, 2005,164-165:889-896
    [13]
    Chen H R, Liu Z D, Huang S J, et al. Study of the mechanism of multi-channel discharge in semiconductor processing by WEDM[J]. Materials Science in Semiconductor Processing, 2015,32:125-130
    [14]
    苏军.高速走丝电火花线切割工艺建模及参数优化研究[D].西安:西安理工大学,2009 Su J. Research of process modeling and parameters optimization for high speed WEDM[D]. Xi'an:Xi'an University of Technology, 2009(in Chinese)
    [15]
    耿雪松,迟关心,王玉魁,等.碳化硅颗粒增强铝基复合材料微细电火花线切割加工材料去除率研究[J].兵工学报,2014,35(6):891-899 Geng X S, Chi G X, Wang Y K, et al. Research on material removal rate of SiC/Al particulate metal matrix composite by micro-wire electrical discharge machining[J]. Acta Armamentarii, 2014,35(6):891-899(in Chinese)
    [16]
    李明辉,杨晓欣.数控电火花线切割加工工艺及应用[M].北京:国防工业出版社,2010 Li M H, Yang X X. Machining process and application of NC WEDM[M]. Beijing:National Defense Industry Press, 2010(in Chinese)
    [17]
    Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197
    [18]
    Jayaprakasam S, Rahim S K A, Leow C Y, et al. Multiobjective beampattern optimization in collaborative beamforming via NSGA-Ⅱ with selective distance[J]. IEEE Transactions on Antennas and Propagation, 2017,65(5):2348-2357
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (975) PDF downloads(707) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return