论文:2022,Vol:40,Issue(2):407-413
引用本文:
王雄, 高英山, 张顺琦, 窦伟元. 基于zig-zag假设的压电阻尼层合结构机电耦合建模与分析[J]. 西北工业大学学报
WANG Xiong, GAO Yingshan, ZHANG Shunqi, DOU Weiyuan. Electromechanical coupling modeling and analysis of piezoelectric damping laminated structures based on zig-zag hypothesis[J]. Northwestern polytechnical university

基于zig-zag假设的压电阻尼层合结构机电耦合建模与分析
王雄1, 高英山2, 张顺琦2,3, 窦伟元3
1. 榆林学院 能源工程学院, 陕西 榆林 719000;
2. 上海大学 机电工程与自动化学院, 上海 200072;
3. 北京交通大学 机械与电子控制工程学院, 北京 100044
摘要:
基于zig-zag板壳假设和哈密顿原理建立了压电阻尼层合结构的机电耦合动力学有限元模型,实现了结构自然频率和损耗系数的准确计算。有限元模型采用八节点的七自由度(degrees of freedom,DOFs)四边形单元,且考虑阻尼层的复弹性模量。通过对文献算例的计算与仿真,验证建立的有限元模型的正确性。研究了材料增强角度、阻尼层厚度和结构曲率对压电阻尼层合结构频率和损耗系数的影响,为压电阻尼层合结构的减振及结构优化提供参考。
关键词:    压电阻尼层合结构    zig-zag假设    阻尼分析    动力学建模   
Electromechanical coupling modeling and analysis of piezoelectric damping laminated structures based on zig-zag hypothesis
WANG Xiong1, GAO Yingshan2, ZHANG Shunqi2,3, DOU Weiyuan3
1. School of Energy Engineering, Yulin University, Yulin 719000, China;
2. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China;
3. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Abstract:
Based on the zig-zag theory and Hamiltonian principle, the electromechanical coupling dynamic finite element(FE) model of piezoelectric damping laminated structure is established, the natural frequency and loss factor of the structure is accurately calculated. The eight nodes quadratic element is adopt for FE modeling, each node with seven DOFs, which considers the complex elastic modulus of damping layer. The correctness of model is verified by the calculation and simulation of an example in the literature. The effects of reinforcement orientation angle, thickness of damping layer and structure curvature on the frequency and loss factor of piezoelectric damping laminated structure are investigated. This study can provide references for vibration control and optimization design of piezoelectric damping laminated structures.
Key words:    piezoelectric damping laminated structure    zig-zag hypothesis    damping analysis    dynamic modeling   
收稿日期: 2021-07-14     修回日期:
DOI: 10.1051/jnwpu/20224020407
基金项目: 国家自然科学基金面上项目(11972020)、北京交通大学“轨道车辆运用工程”国家国际科技合作基地开放课题(BMRV20KF02)资助
通讯作者: 张顺琦(1984-),上海大学教授,主要从事智能结构非线性有限元建模、智能结构主动振动控制、复合材料结构计算、高端智能装备健康监测技术研究。e-mail:zhangsq@shu.edu.cn     Email:zhangsq@shu.edu.cn
作者简介: 王雄(1983-),榆林学院副教授,主要从事智能系统、智能机器人、智能结构主动振动控制研究。
相关功能
PDF(2194KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王雄  在本刊中的所有文章
高英山  在本刊中的所有文章
张顺琦  在本刊中的所有文章
窦伟元  在本刊中的所有文章

参考文献:
[1] 孙大刚, 赵树萍, 孟杰, 等. 风力机叶片约束阻尼结构建模及抑颤研究[J]. 太阳能学报, 2018, 39(4):1165-1172 SUN Dagang, ZHAO Shuping, MENG Jie, et al. Modeling and flutter suppression of wind turbine blade constrained damping structure[J]. Journal of Solar Energy, 2018, 39(4):1165-1172 (in Chinese)
[2] 张志超, 黄微波, 李华阳, 等. 黏弹性阻尼材料及其阻尼结构的研究进展[J]. 环保科技, 2017, 23(6):56-60 ZHANG Zhichao, HUANG Weibo, LI Huayang, et al. Research progress of viscoelastic damping materials and structures[J]. Environmental Protection Technology, 2017, 23(6):56-60 (in Chinese)
[3] KERWIN E M. Damping of flexural waves by a constrained viscoelastic layer[J]. Journal of the Acoustical Society of America, 1959, 31(7):952-962
[4] 王金朝, 王志强, 徐宁, 等. 约束阻尼板结构模态实验及阻尼特性研究[J]. 噪声与振动控制, 2018, 38(6):205-208 WANG Jinchao, WANG Zhiqiang, XU Ning, et al. Modal experiment and damping characteristics of constrained damping plate structure[J]. Noise and Vibration Control, 2018, 38(6):205-208 (in Chinese)
[5] 陈威, 夏利娟. 黏弹性自由阻尼加筋板的随机响应分析和试验研究[J]. 舰船科学技术, 2020, 42(1):62-67 CHEN Wei, XIA Lijuan. Random response analysis and experimental study of viscoelastic free damping stiffened plates[J]. Ship Science and Technology, 2020, 42(1):62-67 (in Chinese)
[6] 黄微波, 张志超, 李华阳, 等. 层间厚度对约束阻尼结构振动性能的影响[J]. 工程抗震与加固改造, 2018, 40(1):8-14 HUANG Weibo, ZHANG Zhichao, LI Huayang, et al. Effect of interlayer thickness on vibration performance of constrained damping structures[J]. Earthquake Resistance and Reinforcement, 2018, 40(1):8-14 (in Chinese)
[7] JIN G, Yang C, LIU Z. Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy's higher-order theory[J]. Composite Structures, 2016, 140:390-409
[8] MOKHTARI M, PERMOON M R, HADDADPOUR H. Dynamic analysis of isotropic sandwich cylindrical shell with fractional viscoelastic core using Rayleigh-Ritz method[J]. Composite Structures, 2018, 186:165-174
[9] YANG X D, YU T J, ZHANG W, et al. Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer[J]. Composite Structures, 2016, 137:105-113
[10] HUANG Z C, QIN Z Y, CHU F L. Damping mechanism of elastic-viscoelastic-elastic sandwich structures[J]. Composite Structures, 2016, 153:96-107
[11] EBRAHIMI F, BARATI M R. Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory[J]. Smart Materials and Structures, 2017, 26:065018
[12] ZHANG S Q, SCHMIDT R. Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations[J]. Composite Structures, 2014, 112:345-357
[13] ZHANG S Q, SCHMIDT R. Large rotation theory for static analysis of composite and piezoelectric laminated thin-walled structures[J]. Thin-Walled Structures, 2014, 78:16-25
[14] MOITA J S, ARAÙJOA L, MARTINS P G, et al. Analysis of active-passive plate structures using a simple and efficient finite element model[J]. Mechanics of Advanced Materials and Structures, 2011, 18(2):159-169
[15] BILASSE M, OGUAMANAM D C D. Forced harmonic response of sandwich plates with viscoelastic core using reduced-order model[J]. Composite Structures, 2013, 105:311-318