论文:2024,Vol:42,Issue(1):180-187
引用本文:
许嘉威, 胡承儒, 侯晓帆, 付玉彬. 电接枝双氰胺改性碳纤维海洋电场电极的制备及其电场响应性能研究[J]. 西北工业大学学报
XU Jiawei, HU Chengru, HOU Xiaofan, FU Yubin. Study on preparation of electrically grafted dicyandiamide modified carbon fibre electrode for marine electric field and its electric field response performance[J]. Journal of Northwestern Polytechnical University

电接枝双氰胺改性碳纤维海洋电场电极的制备及其电场响应性能研究
许嘉威, 胡承儒, 侯晓帆, 付玉彬
中国海洋大学 材料科学与工程学院, 山东 青岛 266100
摘要:
碳纤维电极表面氨基改性可以显著提高其电化学性能和电场响应性能。通过控制接枝电压(3,5,7)V,在碳纤维表面接枝聚双氰胺薄膜调控电极/海水界面双电层结构和电化学性能。结果表明,接枝电位越高,碳纤维表面聚双氰胺薄膜越均匀,电极双电层结构越稳定。其中CF-7V的综合性能最佳,其比电容达到9.368 F·g-1,为空白组的31.6倍;电荷转移电阻和低频容抗显著降低;7天电位漂移量为1.68 mV,可以正常响应1×10-3 Hz,0.03 mV/m的低频弱电场信号,电极的响应灵敏度、准确度得到了显著提高。电接枝改性后碳纤维电极的电场响应性能与Ag/AgCl电极相当,这是一种新型高性能海洋电场传感器,可望提高海洋电场探测能力。
关键词:    碳纤维电极    双氰胺    电化学接枝    电化学性能    电场响应特性   
Study on preparation of electrically grafted dicyandiamide modified carbon fibre electrode for marine electric field and its electric field response performance
XU Jiawei, HU Chengru, HOU Xiaofan, FU Yubin
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Abstract:
Surface amino modification of carbon fibre electrodes can significantly improve their electrochemical and electric field response properties. In this paper, we tune up the grafting voltage (3,5,7 V) and graft polyaminocyanine films on the surface of carbon fibres to modulate the structure and electrochemical properties of the electric double layer at the electrode/sea water interface. The results show that the higher the grafting potential, the more uniform the polyaminocyanine film on the carbon fibre surface and the more stable the electrode bilayer structure. The CF-7V has the best overall performance with a specific capacitance of 9.368 F穏-1, 31.6 times that of the blank group; the charge transfer resistance and low frequency capacitive resistance are significantly reduced; the 7-day potential drift is 1.68 mV, which can respond normally to low frequency weak electric field signals at 1 mHz and 0.03 mV/m, and the response sensitivity and accuracy of the electrodes have been significantly improved. The electric field response performance of the electrically grafted modified carbon fibre electrode is comparable to that of the Ag/AgCl electrode. This is a new type of high performance marine electric field sensor, which is expected to improve the detection capability of marine electric fields.
Key words:    carbon fibre electrodes    dicyandiamide    electrochemical grafting    electrochemical properties    electric field response characteristics   
收稿日期: 2023-02-09     修回日期:
DOI: 10.1051/jnwpu/20244210180
基金项目: 国家自然科学基金(22075262)与国防科技创新特区项目(18-H863-05-ZT-001-018-09)资助
通讯作者: 付玉彬(1968-),教授、博士生导师 e-mail:ffyybb@ouc.edu.cn     Email:ffyybb@ouc.edu.cn
作者简介: 许嘉威(1996-),硕士研究生
相关功能
PDF(2937KB) Free
打印本文
把本文推荐给朋友
作者相关文章
许嘉威  在本刊中的所有文章
胡承儒  在本刊中的所有文章
侯晓帆  在本刊中的所有文章
付玉彬  在本刊中的所有文章

参考文献:
[1] 师于杰, 任海刚. 国外非声探潜与隐身技术发展趋势[J]. 舰船电子工程, 2015, 35(1): 5-9 SHI Yujie, REN Haigang. Trends of foreign non-acoustics exploration potential and stealth technology[J]. Ship Electronic Engineering, 2015, 35(1): 5-9(in Chinese)
[2] 艾艳辉, 赵治平. 非声探测技术面面观[J]. 水雷战与舰船防护, 2003(3): 43-46 AI Yanhui, ZHAO Zhiping. Aspects of non-acoustic detection technology[J]. Mine Warfare & Ship Self-Defence, 2003(3): 43-46(in Chinese)
[3] 赵景波. 舰船腐蚀电磁场的测量及防护方法的研究[D]. 哈尔滨:哈尔滨工程大学, 2006 ZHAO Jingbo. Study on measuring and preventing methods for corrosion electromagnetic field of ships[D]. Harbin: Harbin Engineering University, 2006(in Chinese)
[4] 闫祎. 基于UUV的水下目标非声探测技术研究综述[J]. 舰船科学技术, 2017, 39(23): 10-13 YAN Wei. The overview study of non-acoustic detection technology base on UUV application in searching target underwater[J]. Ship Science and Technology, 2017, 39(23): 10-13(in Chinese)
[5] CHEN C, YANG J X, DU C Y, et al. Distribution features of underwater static electric field intensity of warship in typical restricted sea areas[J]. Progress in Electromagnetics Research, 2020, 102: 225-240
[6] LEGIEN W. UDT Europe 2003: well staged "family affair"[J]. Naval Forces, 2003, 24(4): 132-136
[7] WANG Z D, DENG M, CHEN K, et al. Development and evaluation of an ultralow-noise sensor system for marine electric field measurements[J]. Sensors and Actuators A: Physical, 2014, 213: 70-78
[8] LI H X, SONG Y S, SHEN Z, et al. Research on mechanism of marine electric field detection based on Ag/AgCl electrode[J]. Journal of Naval University of Engineering, 2020, 32(1): 57-61
[9] LUO W, DONG H P, XU J M, et al. Development and characterization of high-stability all-solid-state porous electrodes for marine electric field sensors[J]. Sensors and Actuators A: Physical, 2020, 301: 111730
[10] 刘昂, 宰学荣, 宰敬喆, 等. 尿素改性碳纤维电场电极制备及电化学性能研究[J]. 材料开发与应用, 2017, 32(4): 19-28 LIU Ang, ZAI Xuerong, ZAI Jingzhe, et al. Preparation of electric field electrodes based on carbon fibers modified with urea and its electrochemical performances[J]. Development and Application of Materials, 2017, 32(4): 19-28(in Chinese)
[11] 段智为, 宰学荣, 杨志伟, 等. 多氨基硅烷偶联剂改性碳纤维电场电极的制备及其电化学性能研究[J]. 材料开发与应用, 2018, 33(1): 25-35 DUAN Zhiwei, ZAI Xuerong, YANG Zhiwei, et al. Preparation and electrochemical performance of carbon fiber electric field electrode modified by silane coupling agent with amino group[J]. Development and Application of Materials, 2018, 33(1): 25-35(in Chinese)
[12] FU Y, LI H, CAO W. Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting[J]. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105719
[13] LIU A, FU Y, ZAI J, et al. Electrochemical and electric field response properties of highly sensitive electrodes based on carbon fiber with oxygen and nitrogen surface groups[J]. IEEE Sensors Journal, 2019, 19(11): 3966-3974
[14] GRAVIS D, MOISAN S, PONCIN-EPAILLARD F. Surface characterization of plasma-modified carbon fiber: correlation between surface chemistry and morphology of the single strand[J]. Surfaces and Interfaces, 2020, 21: 100731
[15] YUAN J, AMANO Y, MACHIDA M. Surface modified mechanism of activated carbon fibers by thermal chemical vapor deposition and nitrate adsorption characteristics in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580: 123710
[16] PARK M, PARK J H, YANG B J, et al. Enhanced interfacial, electrical, and flexural properties of polyphenylene sulfide composites filled with carbon fibers modified by electrophoretic surface deposition of multi-walled carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 124-130
[17] MA L, MENG L, WU G, et al. Effects of bonding types of carbon fibers with branched polyethyleneimine on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites[J]. Composites Science and Technology, 2015, 117: 289-297
[18] ZHAO X, HU X, HE Y, et al. Synthesis and characterization of conjugated polycyanamide with ultrafast optical Kerr effect[J]. Materials Letters, 2002, 55(5): 300-303
[19] 付玉彬, 韩永康, 孙久哲, 等. 一种基于失真率的海洋电场传感器性能检测方法及系统: 中国, CN113030826A[P]. 2021-06-25
[20] XU Z, WU X, SUN Y, et al. Surface modification of carbon fiber by redox-induced graft polymerization of acrylic acid[J]. Journal of Applied Polymer Science, 2010, 108(3): 1887-1892
[21] WEN Z, XU C, QIAN X, et al. A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: the electrochemical oxidation followed by grafting of silane coupling agent[J]. Applied Surface Science, 2019, 486: 546-554
[22] ANDIDEH M, ESFANDEH M. Effect of surface modification of electrochemically oxidized carbon fibers by grafting hydroxyl and amine functionalized hyperbranched polyurethanes on interlaminar shear strength of epoxy composites[J]. Carbon, 2017, 123: 233-242
[23] LI X, FANG Y, ZHAO S, et al. Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction[J]. Journal of Materials Chemistry A, 2016, 4(34): 13133-13141
[24] FANG Y, LUO B, JIA Y, et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors[J]. Advanced Materials, 2012, 24(47): 6348-6355
[25] LI X, FANG Y, LIN X, et al. MOF derived nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR[J]. Journal of Materials Chemistry A, 2015, 3(33): 17392-17402
[26] LI Z, CHEN J. Impedance characteristics and complex-space modeling of supercapacitors[J]. Electronic Components and Materials, 2007, 26(2): 7-10
[27] SUN X Z, HUANG B, ZHANG X, et al. Experimental investigation of electrochemical impedance spectroscopy of electrical double layer capacitor[J]. Acta Physico-Chimica Sinica, 2014, 30(11): 2071-2076
[28] KÖTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15/16): 2483-2498
[29] ARULEPP M, PERMANN L, LEIS J, et al. Influence of the solvent properties on the characteristics of a double layer capacitor[J]. Journal of Power Sources, 2004, 133(2): 320-328
[30] HUA W, ZHANG T, DING S, et al. A novel cost-effective PAN/CNS nanofibrous membranes with rich carboxyl groups for high efficient adsorption of Lanthanum(Ⅲ) ions[J]. Separation and Purification Technology, 2021, 259: 118216
[31] CHEN W, CANNON F S, RANGEL-MENDEZ J R. Ammonia-tailoring of GAC to enhance perchlorate removal I: characteriza-tion of thermally tailored GACs[J]. Carbon, 2005, 43: 573-580
[32] YAO F, ZHONG Y, YANG Q, et al. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode[J]. Journal of Hazardous Materials, 2017, 323: 602-610
[33] KIM Y N, LEE Y C, CHOI M. Complete degradation of perchlorate using Pd/N-doped activated carbon with adsorption/catalysis bifunctional roles[J]. Carbon, 2013, 65: 315-323