论文:2024,Vol:42,Issue(1):149-156
引用本文:
彭辰旭, 郑龙席, 卢杰, 罗振坤, 张佳博. 脉冲爆震外涵加力涡扇发动机总体性能研究[J]. 西北工业大学学报
PENG Chenxu, ZHENG Longxi, LU Jie, LUO Zhenkun, ZHANG Jiabo. Investigation of overall performance of turbofan engine with pulse detonation combustor in bypass duct[J]. Journal of Northwestern Polytechnical University

脉冲爆震外涵加力涡扇发动机总体性能研究
彭辰旭, 郑龙席, 卢杰, 罗振坤, 张佳博
西北工业大学 动力与能源学院, 陕西 西安 710129
摘要:
为研究外涵装有脉冲爆震燃烧室(PDC)的混合排气涡扇发动机性能,建立其性能模型。研究了隔离段总压恢复系数和外涵循环参数对PDC特性和整机性能的影响;分析了发动机性能参数对部件参数的敏感性;在相同设计循环参数下与传统加力涡扇发动机性能进行了对比。结果表明:提高隔离段总压恢复系数能够增大PDC增压比,提升发动机性能;风扇压比一定,涵道比增大,发动机耗油率和单位推力增大;风扇压比增大,涵道比在0.2~0.4时,单位推力先增大后减小,涵道比在0.4~0.5时,单位推力先增大后基本不变,涵道比在0.5~0.9时,单位推力一直增大,但增幅逐渐减小。不同涵道比下耗油率随风扇压比增大一直减小;发动机性能对直接影响外涵气流状态参数的部件参数敏感性高;由于PDC的增压特性,脉冲爆震外涵加力发动机仅利用外涵部分气流组织燃烧就可使单位推力与传统加力涡扇发动机相当,且耗油率在设计点降低27.7%,非设计点降低12.8%~26.8%。
关键词:    脉冲爆震燃烧室    涡扇发动机    外涵    总体性能    加力   
Investigation of overall performance of turbofan engine with pulse detonation combustor in bypass duct
PENG Chenxu, ZHENG Longxi, LU Jie, LUO Zhenkun, ZHANG Jiabo
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
The performance model was established to study the performance of mixed exhaust turbofan engine with pulse detonation combustor (PDC) in the bypass duct. The effects of the total pressure loss of isolator and bypass circulation parameters on the characteristic of PDC and performance of engine were analyzed. Then, the sensitivity analysis of performance parameters was carried out on the influence of the components parameters. The performance of mixed exhaust turbofan engine with PDC in the bypass duct was compared with that of the conventional afterburner turbofan engine at the same design circulation parameters. The results show that to increase the total pressure loss of isolator is beneficial to the improvement of performance because of the improvement of pressure ratio; when fan pressure ratio is constant, with the increasing of bypass ratio, the specific fuel consumption and specific thrust increase; with the increasing of fan pressure ratio, when bypass ratio is 0.2 to 0.4, specific thrust increases first and then decreases. When bypass ratio is 0.4 to 0.5, specific thrust increases first and then remains constant. When bypass ratio is 0.5 to 0.9, specific thrust increases, but the rate of increase reduces. At different bypass ratio, specific fuel consumption decreases with increasing of fan pressure ratio; the performance of engine is more sensitive to the component parameters that directly affect the flow state parameters of the bypass duct; because of supercharging performance of PDC, PDC in the bypass duct only uses part of air flow to organize combustion that can make specific thrust of turbofan engine with PDC in the bypass duct and conventional afterburner turbofan engine are equivalent. Meanwhile, specific fuel consumption can be reduced by 27.7% at design point and 12.8%-26.8% at off-design points.
Key words:    pulse detonation combustor    turbofan engine    bypass duct    overall performance    afterburner   
收稿日期: 2023-03-02     修回日期:
DOI: 10.1051/jnwpu/20244210149
通讯作者: 卢杰(1988-),副教授 e-mail:lujie@nwpu.edu.cn     Email:lujie@nwpu.edu.cn
作者简介: 彭辰旭(2000-),硕士研究生
相关功能
PDF(2625KB) Free
打印本文
把本文推荐给朋友
作者相关文章
彭辰旭  在本刊中的所有文章
郑龙席  在本刊中的所有文章
卢杰  在本刊中的所有文章
罗振坤  在本刊中的所有文章
张佳博  在本刊中的所有文章

参考文献:
[1] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005: 4-6 YAN Chuanjun, FAN Wei. Theories and key technologies of the pulse detonation engine[M]. Xi'an: Northwestern Polytechnical University Press, 2005: 4-6(in Chinese)
[2] 郑龙席, 王治武, 黄希桥, 等. 脉冲爆震涡轮发动机技术[M]. 西安: 西北工业大学出版社, 2019: 27-28 ZHENG Longxi, WANG Zhiwu, HUANG Xiqiao, et al. Technologies of pulse detonation turbine engine[M]. Xi'an: Northwestern Polytechnical University Press, 2019: 27-28(in Chinese)
[3] MAWID M A, PARK T W, SEKAR B. Performance analysis of a pulse detonation device as an afterburner[R]. AIAA-2000-3474
[4] MAWID M A, PARK T W. Towards replacement of turbofan engines afterburners with pulse detonation devices[R]. AIAA-2001-3470
[5] MAWID M A, PARK T W, SEKAR B, et al. Application of pulse detonation combustion to turbofan engines[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(1): 270-283
[6] KUMAR S A. Parametric and performance analysis of a hybrid pulse detonation turbofan engine[D]. Arlington: The University of Texas at Arlington, 2011
[7] 陈文娟, 范玮, 邱华, 等. 外涵装有脉冲爆震加力燃烧室的涡扇发动机热力性能分析[J]. 西北工业大学学报, 2010, 28(2): 240-244 CHEN Wenjuan, FAN Wei, QIU Hua, et al. Thermal performance analysis of turbofan engine with the pulse detonation combustors in the bypass duct[J]. Journal of Northwestern Polytechnical University, 2010, 28(2): 240-244(in Chinese)
[8] CHEN Wenjuan, FAN Wei, QIU Hua, et al. Thermodynamic performance analysis of turbofan engine with a pulse detonation duct heater[J]. Aerospace Science and Technology, 2012, 23(1): 206-212
[9] 卢杰, 郑龙席, 王治武, 等. 采用脉冲爆震外涵加力燃烧室的涡扇发动机性能研究[J]. 推进技术, 2014, 35(6): 858-864 LU Jie, ZHENG Longxi, WANG Zhiwu, et al. Investigate on performance of pulse detonation turbine engine with PDC as a duct heater[J]. Journal of Propulsion Technology, 2014, 35(6): 858-864(in Chinese)
[10] ENDO T, FUJIWARA T. Analytical estimation of performance parameters of an ideal pulse detonation engine[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 45(150): 249-254
[11] ENDO T, KASAHARA J, MATSUO A, et al. Pressure history at the thrust wall of a simplified pulse detonation engine[J]. AIAA Journal, 2004, 42(9): 1921-1930
[12] 卢杰. 脉冲爆震涡轮发动机关键技术研究[D]. 西安: 西北工业大学, 2016: 31-40 LU Jie. Investigations on key technologies of the pulse detonation turbine engine[D]. Xi'an: Northwestern Polytechnical University, 2016: 31-40(in Chinese)
[13] 王凌羿, 郑龙席, 黄康, 等. 回流型脉冲爆震燃烧室工作特性分析[J]. 推进技术, 2021, 42(4): 898-905 WANG Lingyi, ZHENG Longxi, HUANG Kang, et al. Operating characteristic of a reverse flow pulse detonation combustor[J]. Journal of Propulsion Technology, 2021, 42(4): 898-905(in Chinese)
[14] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005: 243-255 LIAN Xiaochun, WU Hu. Principle of aeroengine[M]. Xi'an: Northwestern Polytechnical University Press, 2005: 243-255(in Chinese)
[15] 张群, 黄希桥. 航空发动机燃烧学[M]. 北京: 国防工业出版社, 2020: 211-212 ZHANG Qun, HUANG Xiqiao. Combustion science of aeroengine[M]. Beijing: National Defense Industry Press, 2020: 211-212(in Chinese)
[16] 陈文娟, 张群, 范玮, 等. 吸气式脉冲爆震发动机壁温试验[J]. 推进技术, 2011, 32(2): 296-300 CHEN Wenjuan, ZHANG Qun, FAN Wei, et al. Experiment on wall temperature of an air-breathing pulse detonation engine[J]. Journal of Propulsion Technology, 2011, 32(2): 296-300(in Chinese)