论文:2024,Vol:42,Issue(1):70-77
引用本文:
俞涛, 赵盼, 王继孔, 王飞茹, 王磊, 马国良, 侯晶. 柔性焊锡机器人THT组装工艺参数敏感度分析及区间优化[J]. 西北工业大学学报
YU Tao, ZHAO Pan, WANG Jikong, WANG Feiru, WANG Lei, MA Guoliang, HOU Jing. Region optimization and sensitivity analysis of THT assembly process parameters based on flexible soldering robot platform[J]. Journal of Northwestern Polytechnical University

柔性焊锡机器人THT组装工艺参数敏感度分析及区间优化
俞涛1, 赵盼2,3, 王继孔1, 王飞茹1, 王磊1, 马国良1, 侯晶1
1. 西安电子工程研究所, 陕西 西安 710100;
2. 西安明德理工学院 智能制造与控制技术学院, 陕西 西安 710124;
3. 西北工业大学 机电学院, 陕西 西安 710072
摘要:
针对机器人焊接关键工艺参数的选取依赖人工经验的问题,通过响应面法建立了自动化焊锡机器人THT组装工艺参数经验模型,并验证了该模型的可靠性。在此基础上,利用蒙特卡罗模拟分析关键焊接工艺参数的多参数相对敏感度,并绘制了单工艺参数区间敏感度曲线。基于敏感度原理设计了工艺参数稳定域划分方法,获得了面向焊接质量综合分的工艺参数稳定域,并将该稳定域进行压缩得到机器人焊接工艺参数优选区间为:加热温度350~368 ℃,焊接时间1.31~1.48 s,送锡体积1.5~2.0 mm3,在工艺参数优选区间内焊接质量综合分平均值为90.2分。
关键词:    焊锡机器人    焊接工艺参数    敏感度分析    稳定域划分    区间优选   
Region optimization and sensitivity analysis of THT assembly process parameters based on flexible soldering robot platform
YU Tao1, ZHAO Pan2,3, WANG Jikong1, WANG Feiru1, WANG Lei1, MA Guoliang1, HOU Jing1
1. Xi'an Electronics Engineering Research Institute, Xi'an 710100, China;
2. School of Intelligent Manufacturing and Control Technology, Xi'an Mingde Institute of Technology, Xi'an 710124, China;
3. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to solve the problem that the selection of key process parameters of a flexible soldering robot depends on manual experience, the empirical model of its THT assembly process parameters is established with the response surface method and the reliability of the model is verified. On this basis, the multi-parameter relative sensitivity of the key process parameters is analyzed through the Monte-Carlo simulation, and their single-parameter sensitivity curve is drawn. Then, based on the sensitivity analysis, the stability region division method is designed, and the stability region of process parameters for soldering quality comprehensive score is obtained. The optimal region of process parameters of the soldering robot are acquired by compressing the stability region: soldering temperature from 350-368 ℃, soldering time from 1.31-1.48 s and solder feeding volume from 1.5-2.0 mm3. The average value of the soldering quality comprehensive score within the optimal region of process parameters is 90.2 points.
Key words:    soldering robot    process parameter    sensitivity analysis    stability region    region optimization   
收稿日期: 2022-12-06     修回日期:
DOI: 10.1051/jnwpu/20244210070
基金项目: 陕西省自然科学基础研究计划(2023-JC-YB-431)、陕西省教育厅科学研究计划(23JP124)、陕西高校青年创新团队(2022)、教育部产学合作协同育人项目(220906280183841)、西安明德理工学院科研基金(2022XY02L04)、西安明德理工学院教育教学改革研究项目(JG2022ZD03)与航空科学基金(2020Z045053001)资助
通讯作者: 赵盼(1986-),教授 e-mail:pan.zhao@nwpu.edu.cn     Email:pan.zhao@nwpu.edu.cn
作者简介: 俞涛(1985-),高级工程师
相关功能
PDF(3979KB) Free
打印本文
把本文推荐给朋友
作者相关文章
俞涛  在本刊中的所有文章
赵盼  在本刊中的所有文章
王继孔  在本刊中的所有文章
王飞茹  在本刊中的所有文章
王磊  在本刊中的所有文章
马国良  在本刊中的所有文章
侯晶  在本刊中的所有文章

参考文献:
[1] XIANG L, XING S, LIU Y. Adaptive region control for robotic soldering of flexible PCBs[C]//18th International Conference on Advanced Robotics, Hong Kong, 2017: 216-221
[2] 任豪. 面向精密装配焊接的机器人微操作技术[D]. 北京:中国科学院大学, 2021 REN Hao. Robotic micromanipulation for precise assembly and soldering[D]. Beijing: University of Chinese Academy of Sciences, 2021(in Chinese)
[3] FONSEKA C L S C, JAYASINGHE J A K S. Implementation of an automatic optical inspection system for solder quality classification of THT solder joints[J]. IEEE Trans on Components, Packaging and Manufacturing Technology, 2019, 9(2): 353-366
[4] TSIGARAS G, DOLGA V. Robot soldering positions correction with cognex vision camera[C]//New Advances in Mechanisms, Mechanical Transmissions and Robotics, 2021: 444-456
[5] 杨小健, 沈丽, 於德雪, 等. 混装型印制板组件的通孔回流焊接工艺研究[J]. 航天制造技术, 2018, 4(2): 44-48 YANG Xiaojian, SHEN Li, YU Dexue, et al. Study on pin-through-hole reflow soldering process of mixed-mounting printed circuit boards[J]. Aerospace Manufacturing Technology, 2018, 4(2): 44-48(in Chinese)
[6] JING S, LI M, LI X, et al. Optimization of reflow soldering temperature curve based on genetic algorithm[J]. Energy Reports, 2021, 7: 772-782
[7] DEEYING J, ASAWARUNGSAENGKUL K, CHUTIMA P. Multi-objective optimization on laser solder jet bonding process in head gimbal assembly using the response surface methodology[J]. Optics & Laser Technology, 2018, 98: 158-168
[8] SEIDEL R, THIELEN N, SCHMIDT K, et al. Development and test of a data framework for prediction of soldering quality in selective wave soldering applying K-nearest neighbors[C]//2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging, 2020: 250-255
[9] LAU C S, ABDULLAH M Z, KHOR C Y. Optimization of the reflow soldering process with multiple quality characteristics in ball grid array packaging by using the grey-based Taguchi method[J]. Microelectronics International, 2013, 30(3): 151-168
[10] ABDUL A M S, ABDULLAH M Z, KHOR C Y, et al. Optimization of pin through hole connector in thermal fluid-structure interaction analysis of wave soldering process using response surface methodology[J]. Simulation Modelling Practice and Theory, 2015, 57: 45-57
[11] HAN J, GUO F, LIU J P. Early stages of localized recrystallization in Pb-free BGA solder joints subjected to thermomechanical stress original research article[J]. Journal of Alloys and Compounds, 2017, 704(15): 574-584
[12] ANDERSON M J, WHITCOMB P J. RSM simplified: optimizing processes using response surface methods for design of experiments[M]. New York: Productivity Press, 2016
[13] YU T, SHI Y, HE X, et al. Optimization of parameter ranges for composite tape winding process based on sensitivity analysis[J]. Applied Composite Materials, 2016, 24(4): 821-836
[14] DENG B, SHI Y, YU T, et al. Multi-response parameter interval sensitivity and optimization for the composite tape winding process [J]. Materials, 2018, 11(2): 220
[15] KANG C, LIU Z, SHIRINZADEH B, et al. Parametric optimization for multi-layered filament-wound cylinder based on hybrid method of GA-PSO coupled with local sensitivity analysis[J]. Composite Structures, 2021, 267: 113861