论文:2023,Vol:41,Issue(6):1162-1169
引用本文:
马菁, 马强, 王俊杰, 郭镇松, 孙亚松. 温度和阴极湿度对质子交换膜燃料电池的影响[J]. 西北工业大学学报
MA Jing, MA Qiang, WANG Junjie, GUO Zhensong, SUN Yasong. Effects of temperature and cathode humidity on performance of PEM full cell[J]. Journal of Northwestern Polytechnical University

温度和阴极湿度对质子交换膜燃料电池的影响
马菁1, 马强1, 王俊杰1, 郭镇松1, 孙亚松2
1. 长安大学 汽车学院, 陕西 西安 710018;
2. 长安大学 能源与电气工程学院, 陕西 西安 710018
摘要:
温度和阴极湿度直接影响质子交换膜燃料电池(PEMFC)的功率密度与内部水分布,由于二者的耦合作用,在工程实际中,PEMFC的高效可靠运行往往需要同时考虑二者的调节关系。因此,针对这一问题,提出了工作温度与阴极湿度双参数对PEMFC性能的协同影响分析。文中对于逆流形式单直通道的PEMFC,构建了三维稳态模型。通过与实验结果对比,验证了模型的正确性,并根据电压变化研究了不同组合下PEMFC功率密度和内部水分布特性。结果表明,在不同电压阶段,质子交换膜(PEM)对温度和阴极湿度的敏感性不同,对两者进行耦合分析,可获得较高的质子交换膜电导率和较宽的功率密度调节域。
关键词:    质子交换膜燃料电池    工作温度    阴极湿度    电池性能    协同分析   
Effects of temperature and cathode humidity on performance of PEM full cell
MA Jing1, MA Qiang1, WANG Junjie1, GUO Zhensong1, SUN Yasong2
1. School of Automobile, Chang'an University, Xi'an 710018, China;
2. School of Energy and Electrical Engineering, Chang'an University, Xi'an 710018, China
Abstract:
The performance of proton exchange membrane fuel cells (PEMFCs) is significantly influenced by their temperature and cathode humidity, as they affect power density and internal water distribution. The interdependent nature of these two parameters necessitates their simultaneous consideration in practical engineering to achieve high efficiency and reliable PEMFC operation. Therefore, this study proposes a synergistic analysis of the dual-parameter effect of working temperature and cathode humidity on PEMFC performance, using a three-dimensional steady-state model for counter-flow single-channel PEMFCs. The model's correctness is verified through comparison with experimental results, and the resulting power density and internal water distribution characteristics of PEMFCs are studied based on voltage changes. The findings indicate that the sensitivity of the proton exchange membrane (PEM) to temperature and cathode humidity varies at different voltage stages. Coupling analysis of these two factors enhances proton exchange membrane conductivity and expands the range of power density adjustment. Consequently, this study provides crucial insights into the interplay between temperature and cathode humidity in PEMFCs, facilitating the design and optimization of PEMFC systems for practical engineering applications.
Key words:    proton exchange membrane fuel cell    operating temperature    cathode humidity    battery performance    synergistic analysis   
收稿日期: 2022-11-25     修回日期:
DOI: 10.1051/jnwpu/20234161162
基金项目: 国家自然科学基金面上项目(51976014)、陕西省重点研发计划(2020GY-200)与西安市科技计划项目(2022JH-GXQY-0074)资助
通讯作者: 孙亚松(1986-),长安大学教授,主要从事氢燃料电池水热管理研究。e-mail:sunyasong@chd.edu.cn     Email:sunyasong@chd.edu.cn
作者简介: 马菁(1986-),长安大学副教授,主要从事车载燃料电池动力系统研究。
相关功能
PDF(2779KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马菁  在本刊中的所有文章
马强  在本刊中的所有文章
王俊杰  在本刊中的所有文章
郭镇松  在本刊中的所有文章
孙亚松  在本刊中的所有文章

参考文献:
[1] 李建林, 李光辉, 郭丽军, 等. "十四五"规划下氢能应用技术现状综述及前景展望[J]. 电气应用, 2021, 40(6): 10-16 LI Jianlin, LI Guanghui, GUO Lijun, et al. Overview and prospect of hydrogen energy application technology under the 14th five year plan[J]. Electrotechnical Application, 2021, 40(6): 10-16 (in Chinese)
[2] 马建, 刘晓东, 陈轶嵩, 等. 中国新能源汽车产业与技术发展现状及对策[J]. 中国公路学报, 2018, 31(8): 1-19 MA Jian, LIU Xiaodong, CHEN Yisong, et al. Current status and countermeasures for China's new energy automobile industry and technology development[J]. China Journal of Highway and Transport, 2018, 31(8): 1-19 (in Chinese)
[3] DJILALI N. Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities[J]. Energy, 2006, 32(4): 269-280
[4] ALI A S, EBRAHIM A, ELNAZ Z, et al. Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel[J]. Energy, 2021, 234: 121247
[5] TURKMEN A C, CELIK C. The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells[J]. Fuel, 2018, 222: 465-474
[6] FARCAS A C. A Proposed control technique for water management in proton exchange membrane fuel cells[J]. Applied Mechanics and Materials, 2013, 2776: 145-152
[7] 樊林浩, 张国宾, 焦魁. 高电流、低加湿工况下PEMFC的性能研究[J]. 工程热物理学报, 2019, 40(4): 870-876 FAN Linhao, ZHANG Guobin, JIAO Kui. Investigations on PEMFC performance under high current density and low humidification[J]. Journal of Engineering Thermophysics, 2019, 40(4): 870-876 (in Chinese)
[8] XING L, LIU X T, ALAJE T, et al. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane(PEM) fuel cell[J]. Energy, 2014, 73: 618-634
[9] 陆佳斌, 申欣明, 陈明, 等. 阴极湿度与电流密度对PEMFC性能的协同影响[J]. 电源技术, 2021, 45(8): 1018-1022 LU Jiabin, SHEN Xinming, CHEN Ming, et al. Synergistic effect of cathode humidity and current density on performance of PEMFC[J]. Chinese Journal of Power Sources, 2021, 45(8): 1018-1022 (in Chinese)
[10] 蒋杨, 焦魁. 质子交换膜燃料电池建模及水热传输特性分析[J]. 热科学与技术, 2019, 18(3): 200-205 JIANG Yang, JIAO Kui. Modeling and analysis of water and heat transfer characteristics of proton exchange membrane fuel cell[J]. Journal of Thermal Science and Technology, 2019, 18(3): 200-205 (in Chinese)
[11] LU J B, WEI G H, ZHU F J, et al. Pressure effect on the PEMFC performance[J]. Fuel Cells, 2019, 19(3): 211-220
[12] SHEN J, ZENG L P, TU Z K, et al. Numerical investigation of temperature distribution of proton exchange membrane fuel cells at high current density[J]. Journal of Porous Media, 2019, 22(7): 813-829
[13] LIU Y F, GAO J H, PEI P C, et al. Effects of dynamic changes in inlet temperature on proton exchange membrane fuel cell[J]. Journal of Renewable and Sustainable Energy, 2019, 11(4): 044302
[14] YANG T F, SHEU B H, GHALAMBAZ M, et al. Effects of operating parameters and load mode on dynamic cell performance of proton exchange membrane fuel cell[J]. International Journal of Energy Research, 2020, 45(2): 2474-2487
[15] WEI G H, LU J B, ZHANG Q L, et al. Analyze the effects of flow mode and humidity on PEMFC performance by equivalent membrane conductivity[J]. International Journal of Energy Research, 2019, 43(9): 4592-4605
[16] RAJ A, SHAMIM T. Investigation of the effect of multidimensionality in PEM fuel cells[J]. Energy Conversion and Management, 2014, 86: 443-452
[17] 王世学, 齐贺, 李桦. 一种新型进气方式对燃料电池水管理效果的影响[J]. 热科学与技术, 2013, 12(4): 354-359 WANG Shixue, QI He, LI Hua. Influence on water management using new inlet gas humidification design for PEFC[J]. Journal of Thermal Science and Technology, 2013, 12(4): 354-359 (in Chinese)
[18] 高强, 张拴羊, 徐洪涛, 等. 肋片结构对质子交换膜燃料电池性能影响模拟研究[J]. 热能动力工程, 2020, 35(7): 215-222 GAO Qiang, ZHANG Shuanyang, XU Hongtao, et al. Simulation study on the effect of fin structure on the performance of proton exchange membrane fuel cell[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(7): 215-222 (in Chinese)
[19] ZHANG G B, JIAO K. Three-dimensional multi-phase simulation of PEMFC at high current density utilizing eulerian-eulerian model and two-fluid model[J]. Energy Conversion and Management, 2018, 176: 409-421
[20] HU G L, LI G N, ZHENG Y Q, et al. Optimization and parametric analysis of PEMFC based on an agglomerate model for catalyst layer[J]. Journal of the Energy Institute, 2014, 87(2): 163-174
[21] LIU H J. Research on liquid water distribution in PEMFC cathode porous media[J]. International Journal of Electrochemical Science, 2020, 15(7): 6717-6736
[22] XING L, CAI Q, LIU X T, et al. Anode partial flooding modelling of proton exchange membrane fuel cells: optimization of electrode properties and channel geometries[J]. Chemical Engineering Science, 2016, 146: 88-103