论文:2023,Vol:41,Issue(6):1125-1133
引用本文:
李清安, 王可, 范玮, 杨海, 韩俊德, 黄颗, 康健, 高雅青, 江余敏. 单次脉冲爆震反压传播规律与抑制研究[J]. 西北工业大学学报
LI Qing'an, WANG Ke, FAN Wei, YANG Hai, HAN Junde, HUANG Ke, KANG Jian, GAO Yaqing, JIANG Yumin. Study on back-pressure propagation and suppression of single pulse detonation[J]. Journal of Northwestern Polytechnical University

单次脉冲爆震反压传播规律与抑制研究
李清安1, 王可2,3, 范玮2,3, 杨海1, 韩俊德1, 黄颗1, 康健1, 高雅青1, 江余敏1
1. 四川航天系统工程研究所, 四川 成都 610100;
2. 西北工业大学 动力与能源学院, 陕西 西安 710129;
3. 陕西省航空动力系统热科学重点实验室, 陕西 西安 710129
摘要:
脉冲爆震燃烧室(pulse detonation combustor,PDC)反压反流的前传是导致脉冲爆震发动机推力损失的主要因素。为抑制PDC反流的传播,采用气动抑制策略,设计出不同结构组合而成的10种隔离段,使用恰当比的乙烯/富氧空气混合物开展了单次脉冲爆震的实验研究。结果表明:当反压传播距离约为0.86倍PDC长度时,相比于基准隔离段,Venturi管(V)与1.5倍PDC直径的直管组合的隔离段由于能够提供更大的膨胀空间,其反压的传播速度与峰值可分别降低约10%与20%;相对于无Tesla阀(T)的隔离段,在安装了Tesla阀的隔离段中,反压传播速度可再降低27.3%以上;相对于无泄压小孔(S)的隔离段,安装了泄压小孔的隔离段可降低25%的反压峰值;中心锥(C)的引入可大幅提高反压传播过程中的平均衰减率。在10种隔离段中,CVST型组合隔离段结构具有最佳的反压抑制能力。相比于基准隔离段,反压在CVST隔离段中的传播速度降低了约50%,峰值降低了约40.5%,平均峰值衰减率提升了1倍左右。
关键词:    爆震    反流    压力传播    压力衰减    脉冲爆震发动机   
Study on back-pressure propagation and suppression of single pulse detonation
LI Qing'an1, WANG Ke2,3, FAN Wei2,3, YANG Hai1, HAN Junde1, HUANG Ke1, KANG Jian1, GAO Yaqing1, JIANG Yumin1
1. Sichuan Aerospace System Engineering Research Institute, Chengdu 610100, China;
2. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China;
3. Shaanxi Key Laboratory of Thermal Sciences in Aero-Engine System, Xi'an 710129, China
Abstract:
The backflow and back-pressure propagation induced in a pulse detonation combustor (PDC) are the main factor in causing the thrust losses of a pulse detonation engine. In order to suppression the backflow propagation of a PDC, the aero-dynamic suppression strategy was implemented in this work. A total of ten isolators composed of different geometries were designed. A single-pulse detonation experiment was conducted by using the stoichiometric ethylene/enriched-oxygen mixture. It is shown that when the back-pressure has propagated about 0.86 the length of PDC, the propagation speeds and the pecks of the back-pressure in the isolator, which composed of the Venturi tube (V) and a long tube with 1.5 times diameter of the PDC, can be reduced by 10% and 20%, respectively, comparing with the base isolator. Comparing with the isolators that without the Tesla valve (T), the propagation speed of the back-pressure in the cases with the Tesla valve can be additionally reduced above 27.3%. Comparing with the isolators that without the slit (S), the peaks of the back-pressure in the cases with the slit can be decreased about 25%. The average decay rate of the back-pressure peaks can be highly increased if the cone (C) is introduced. It is found that the CVST-type isolator is the optimal. Comparing with the base isolator, the backpressure propagated in the CVST-type isolator can decrease about 50% and 40.5% of propagation speed and pressure peaks, respectively, and can increase the average decay rate of the back-pressure peaks by a factor of two.
Key words:    detonation    backflow    pressure propagation    pressure attenuation    pulse detonation engine   
收稿日期: 2022-10-13     修回日期:
DOI: 10.1051/jnwpu/20234161125
基金项目: 国家自然科学基金(52176133)与陕西省创新能力支撑计划(2021KJXX-93)资助
通讯作者: 王可(1986-),西北工业大学教授,主要从事爆震推进理论与工程研究。e-mail:wangk@nwpu.edu.cn     Email:wangk@nwpu.edu.cn
作者简介: 李清安(1992-),四川航天系统工程研究所工程师,主要从事燃烧流动与控制研究。
相关功能
PDF(4827KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李清安  在本刊中的所有文章
王可  在本刊中的所有文章
范玮  在本刊中的所有文章
杨海  在本刊中的所有文章
韩俊德  在本刊中的所有文章
黄颗  在本刊中的所有文章
康健  在本刊中的所有文章
高雅青  在本刊中的所有文章
江余敏  在本刊中的所有文章

参考文献:
[1] FICKETT W, DAVIS W C. Detonation: theory and experiment[M]. New York: Dover Publications Inc, 2000
[2] LU F K, BRAUN E M. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power, 2014, 30(5): 1125-1142
[3] WOLAÑSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158
[4] MUNIPALLI R, SHANKAR V, WILSON D R, et al. Preliminary design of a pulsed detonation based combined cycle engine[C]//10th International Symposium of Air Breathing Engine, 2001
[5] KAEMMING T. Integrated vehicle comparison of turbo-ramjet engine and pulsed detonation engine[C]//Proceedings of ASME Turbo Expo, 2001
[6] BUSSING T R A, LIDSTONE G, CHRISTOFFERSON E, et al. Pulse detonation propulsion proof of concept test article development[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002
[7] WANG K, FAN W. Efforts on high-frequency pulse detonation engines[J]. Journal of Propulsion and Power, 2016: 33(1): 17-28
[8] 于潇栋, 王可, 朱亦圆, 等. 无阀模式下液态燃料高频爆震燃烧组织方法实验研究[J]. 航空学报, 2022: 43: 126245 YU Xiaodong, WANG Ke, ZHU Yiyuan, et al. Experimental study on liquid fueled high-frequency detonations in the valveless scheme[J]. Acta Aeronautica et Astronautica Sinica, 2022: 43: 126245 (in Chinese)
[9] WANG K, WANG Z, ZHANG Q, et al. Study on a simplified double-frequency scheme for pulse detonation rocket engines[J]. Acta Astronautica, 2018, 148: 337-344
[10] LU W, FAN W, WANG K, et al. Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2657-2664
[11] ANDERSON E, STEVENS C, HOKE J, et al. Ball valve pulsed detonation engine[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011
[12] MERCURIO N, PAL S, WOODWARD R, et al. Experimental studies of the unsteady ejector mode of a pulse detonation rocket-based combined cycle engine[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2010
[13] WU Y, HAN Q, SHEN Y, et al. Ignition study on a rotary-valved air-breathing pulse detonation engine[J]. International Journal of Turbo & Jet-Engines, 2015, 34(2): 1-12
[14] 彭畅新. 脉冲爆震外涵加力燃烧室关键技术研究[D]. 西安: 西北工业大学, 2013 PENG Changxin. Investigation on key technologies of pulse detonation combustor as bypass burner[D]. Xi'an: Northwestern Polytechnical University, 2013 (in Chinese)
[15] 马虎. 簧片阀式脉冲爆震发动机研究[D]. 南京: 南京理工大学, 2015 MA Hu. Investigation on pulse detonation engine with reed valve[D]. Nanjing: Nanjing University of Science and Technology, 2015 (in Chinese)
[16] DANIAU E, FALEMPIN F, ZHANG G, et al. Preliminary work for a pulsed detonation engine demonstrator[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006
[17] MATSUOKA K, YAGETA J, NAKAMICHI T, et al. Inflow-driven valve system for pulse detonation engines[J]. Journal of Propulsion and Power, 2011, 27(3): 597-607
[18] MATSUOKA K, ESUMI M, IKEGUCHI K B, et al. Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve[J]. Combustion and Flame, 2012, 159(3): 1321-1338
[19] 郑殿峰, 杨义勇, 王家骅. 吸气式脉冲爆震发动机钝体气动阀的设计与实验研究[J]. 北京大学学报(自然科学版), 2012: 48(3): 347-353 ZHEN Dianfeng, YANG Yiyong, WANG Jiahua. Design and experimental investigation of blunt aero-valve for air-breathing pulse detonation engine[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012: 48(3): 347-353 (in Chinese)
[20] 宫继双. 提高气动阀式脉冲爆震发动机性能的技术研究[D]. 南京:南京航空航天大学, 2012 GONG Jishuang. Investigation on improving performance of aero-valve pulse detonation engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese)
[21] 杨光远. 气动阀式PDE推力性能分析与实验研究[D]. 南京: 南京航空航天大学, 2017 YANG Guangyuan. Analysis and experimental investigation on the thrust performance of aero-valve pulse detonation engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese)
[22] QIU H, XIONG C, YAN C, et al. Effect of aerodynamic valve on backflow in pulsed detonation tube[J]. Aerospace Science and Technology, 2013, 25(1): 1-15
[23] FOA J V. Elements of flight propulsion[M]. New York and London: John Wiley & Sons, 1960
[24] 卢杰. 脉冲爆震涡轮发动机关键技术研究[D]. 西安: 西北工业大学, 2016 LU Jie. Investigation on key technologies of the pulse detonation turbine engine[D]. Xi'an: Northwestern Polytechnical University, 2012 (in Chinese)
[25] WANG Z, WANG Y, HUANG J, et al. Back-propagation suppression study based on intake configuration optimization for an air-breathing pulse detonation engine[J]. Aerospace Science and Technology, 2021, 118: 107042
[26] 李清安, 王可, 孙田雨, 等. 脉冲爆震发动机反压传播规律数值研究[J]. 实验流体力学, 2019, 33(1): 103-110 LI Qing'an, WANG Ke, SUN Tianyu, et al. Numerical study on propagation characteristics of back-pressure in a pulse detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 103-110 (in Chinese)
[27] TESLA N. Valvular Conduit: US, 1329559[P]. 1920-02-03
[28] 张文龙. 无阀式脉冲爆震火箭发动机测控方法与实现技术研究[D]. 西安: 西北工业大学, 2019 ZHANG Wenlong. Research on measurement and control method and implementation technology of valveless pulse detonation rocket engine[D]. Xi'an: Northwestern Polytechnical University, 2019 (in Chinese)
[29] 沙定国. 误差分析与测量不确定度评定[M]. 北京: 中国计量出版社, 2003 SHA Dingguo. Error analysis and evaluation of measurement uncertainty[M]. Beijing: China Metrology Publishing House, 2003 (in Chinese)
相关文献:
1.张文龙, 裴承鸣, 李江红, 范玮.多管点火脉冲爆震发动机测控系统设计[J]. 西北工业大学学报, 2018,36(1): 162-168
2.王治武, 王亚奇, 张洋, 刘星, 郑龙席.三点火源与障碍物起爆特性对比研究[J]. 西北工业大学学报, 2017,35(2): 240-245
3.王治武, 张洋, 陈星谷, 郑龙席, 卢杰.频率对两相爆震波起爆特性影响的实验研究[J]. 西北工业大学学报, 2015,33(5): 831-836
4.王治武, 张昆, 郑龙席, 卢杰, 张洋.喷管角度对脉冲爆震发动机性能影响数值研究[J]. 西北工业大学学报, 2015,33(3): 456-461
5.邱华, 龚婷婷, 熊姹, 郑龙席.带二次流增推尾喷管的脉冲爆震发动机数值模拟研究[J]. 西北工业大学学报, 2015,33(2): 271-277
6.郑龙席, 卢杰, 彭畅新, 王治武.吸气式无阀脉冲爆震发动机DDT过程数值模拟[J]. 西北工业大学学报, 2014,32(5): 713-718
7.王治武, 陈星谷, 郑龙席, 彭畅新, 卢杰.不同类型射流起爆爆震波特性的数值研究[J]. 西北工业大学学报, 2014,32(4): 618-623
8.陈星谷, 王治武, 郑龙席, 彭畅新, 胡明.预爆管布置方式对起爆特性影响的数值模拟研究[J]. 西北工业大学学报, 2013,31(5): 737-741
9.李晓丰, 郑龙席, 邱华.脉冲爆震涡轮发动机气动阀特性数值模拟研究[J]. 西北工业大学学报, 2013,31(6): 935-939
10.黄希桥, 李洋, 陈乐, 穆扬, 郑龙席.脉冲爆震发动机引射器增推性能的实验研究[J]. 西北工业大学学报, 2013,31(1): 55-59