论文:2023,Vol:41,Issue(6):1114-1124
引用本文:
石浩, 张后全, 吴疆宇, 宋雷, 李明, 荣传新, 陆鹏举. 考虑微元强度韦伯分布与裂纹长度幂律排布的砂岩强度预测模型[J]. 西北工业大学学报
SHI Hao, ZHANG Houquan, WU Jiangyu, SONG Lei, LI Ming, RONG Chuanxin, LU Pengju. Prediction model for sandstone strength based on Weibull distribution of micro-element strength and power-law distribution of crack length[J]. Journal of Northwestern Polytechnical University

考虑微元强度韦伯分布与裂纹长度幂律排布的砂岩强度预测模型
石浩1,2,3,4,5, 张后全2,3, 吴疆宇2,3, 宋雷2,3, 李明2,3, 荣传新1,4, 陆鹏举6
1. 安徽理工大学 矿山建设工程安徽省高校重点实验, 安徽 淮南 232001;
2. 中国矿业大学 深部岩土力学与地下工程国家重点实验室, 江苏 徐州 221116;
3. 中国矿业大学 力学与土木工程学院, 江苏 徐州 221116;
4. 安徽理工大学 土木建筑学院, 安徽 淮南 232001;
5. 山东科技大学 省部共建矿山岩层智能控制与绿色开采国家重点实验室培育基地, 山东 青岛 266590;
6. 中煤矿山建设集团有限责任公司, 安徽 合肥 230000
摘要:
构建统筹考虑岩石内部宏细微观缺陷影响的强度预测模型对于保障智慧矿山的建设以及井下人员设备的安全都具有重要意义。综合考虑岩石微元强度的韦伯分布与裂纹长度的幂律排布规律,采用数值模拟与理论推导方法分别建立损伤岩石试件的离散元计算模型与强度预测模型,并利用数值计算结果对理论模型的合理性进行验证。结果表明:①通过编程同时实现了PFC2D计算模型中微元强度的韦伯分布与裂纹长度的幂律排布,分析了岩石中的宏、细微观损伤与相应分布参数间的定量对应关系。②数值建立了400个同时考虑宏、细微观损伤的砂岩试件并对其进行了模拟加载,实现了对微元强度、预制裂纹信息及岩石强度间关系的统计分析。根据模拟结果构建了砂岩试件单轴抗压强度四维空间散点,得到了多损伤参量影响下的试件抗压强度流动规律。③联合Mori-Tanaka方法及岩石损伤概率分布理论,推导建立了12参数的岩石强度预测模型。该模型能够同时描述细微观微元强度与宏观裂纹信息对岩石强度的影响,并且理论模型计算结果与数值模拟结果高度吻合,相关系数达0.991。
关键词:    微元损伤统计    韦伯分布    预制裂纹长度    幂律排布    岩石强度预测模型   
Prediction model for sandstone strength based on Weibull distribution of micro-element strength and power-law distribution of crack length
SHI Hao1,2,3,4,5, ZHANG Houquan2,3, WU Jiangyu2,3, SONG Lei2,3, LI Ming2,3, RONG Chuanxin1,4, LU Pengju6
1. Anhui Key Laboratory of Mining Construction Engineering, Anhui University of Science and Technology, Huainan 232001, China;
2. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China;
3. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;
4. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China;
5. State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China;
6. China Coal Mine Construction Group Corporation LTD, Hefei 230000, China
Abstract:
It is of the great significance to construct the strength prediction model that considers the influence of the macro and micro defects in the rock in an overall manner to ensure the construction of smart mines and the safety of underground personnel and equipment. Based on the Weibull distribution of rock micro-element strength and the power-law distribution of crack length and the discrete element calculation model, the prediction model for strength of damaged rock specimens were established by numerical simulation and theoretical derivation respectively. Then the rationality of the model was verified by the calculated results. The results show that: 1) The weibull distribution of the micro-element strength and the power-law distribution of the crack length in the PFC2D calculation model are realized by programming, and the quantitative corresponding relationship between the macro, micro and micro damage in the rock and the corresponding distribution parameters is analyzed. 2) 400 sandstone specimens with macro, micro and micro damage are numerically established and loaded to achieve statistical analysis of the relationship between micro element strength, pre-crack information and rock strength. According to the simulation results, the four-dimensional space scatter points of uniaxial compressive strength of sandstone specimens are constructed, and the flow law of compressive strength of sandstone specimens under the influence of multiple damage parameters is obtained. 3) Combined with Mori Tanaka method and rock damage probability distribution theory, a 12 parameter rock strength prediction model is established. The model can both describe the influence of the micro-element strength and macroscopic crack information on the rock strength, and the model calculation results are highly consistent with the simulated results, with the correlation coefficient up to 0.991.
Key words:    element damage statistics    Weibull distribution    prefabricated crack length    power-law distribution    rock strength prediction model   
收稿日期: 2023-01-05     修回日期:
DOI: 10.1051/jnwpu/20234161114
基金项目: 安徽省高等学校自然科学研究重点项目(2022AH050807)、矿山建设工程安徽省高校重点实验室开放课题(GXZDSYS2022107)、安徽理工大学校青年基金(QNZD2021-03)、安徽理工大学高层次引进人才科研启动基金(2021yjrc16)、国家自然科学基金面上项目(52274145,41974164,52074240,52174090)、中央高校基本科研业务费(2018ZDPY08)与安徽省大学生创新创业训练计划(202310361111)资助
通讯作者: 张后全(1979-),中国矿业大学副教授,主要从事岩石力学及锚杆支护研究。e-mail:zhanghouquan_cumt@163.com     Email:zhanghouquan_cumt@163.com
作者简介: 石浩(1991-),安徽理工大学讲师,主要从事岩石力学及锚杆支护研究。
相关功能
PDF(3605KB) Free
打印本文
把本文推荐给朋友
作者相关文章
石浩  在本刊中的所有文章
张后全  在本刊中的所有文章
吴疆宇  在本刊中的所有文章
宋雷  在本刊中的所有文章
李明  在本刊中的所有文章
荣传新  在本刊中的所有文章
陆鹏举  在本刊中的所有文章

参考文献:
[1] 丁恩杰, 俞啸, 夏冰, 等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报, 2022, 47(1): 564-578 DING Enjie, YU Xiao, XIA Bing, et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society, 2022, 47(1): 564-578 (in Chinese)
[2] 王国法, 赵国瑞, 任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报, 2019, 44(1): 34-41 WANG Guofa, ZHAO Guorui, REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society, 2019, 44(1): 34-41 (in Chinese)
[3] 付蒙, 李江红, 吴亚锋, 等. 钻柱黏滑振动特性仿真与产生机理分析[J]. 西北工业大学学报, 2016, 34(3): 467-472 FU Meng, LI Jianghong, WU Yafeng, et al. Characteristic simulation and mechanisms analysis for drill-strings stick-slip vibration[J]. Journal of Northwestern Polytechnical University, 2016, 34(3): 467-472 (in Chinese)
[4] 尤明庆. 岩石的损伤、黏结和摩擦特性研究[J]. 岩土工程学报, 2019, 41(3): 554-560 YOU Mingqing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560 (in Chinese)
[5] 秦庆词, 李克钢, 杨宝威, 等. 岩石全应力-应变过程关键特征点损伤特征分析[J]. 岩土力学, 2018, 39(增刊2): 14-24 QIN Qingci, LI Kegang, YANG Baowei, et al. Analysis of damage characteristics of key characteristic points in rock complete stress-strain process[J]. Rock and Soil Mechanics, 2018, 39(suppl2): 14-24 (in Chinese)
[6] 尤明庆. 围压对岩石试样强度的影响及离散性[J]. 岩石力学与工程学报, 2014, 33(5): 929-937 YOU Mingqing. Effect of confining pressure on strength scattering of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 929-937 (in Chinese)
[7] 曹文贵, 赵明华, 刘成学. 基于韦伯分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19): 3226-3231 CAO Wengui, ZHAO Minghua, LIU Chengxue. Study on the model and its modifying method for rock softening and damage based on Weibull random distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3226-3231 (in Chinese)
[8] 蒋浩鹏, 姜谙男, 杨秀荣. 基于韦伯分布的高温岩石统计损伤本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902 JIANG Haopeng, JIANG Annan, YANG Xiurong. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification[J]. Rock and Soil Mechanics, 2021, 42(7): 1894-1902 (in Chinese)
[9] 张慧梅, 雷利娜, 杨更社. 基于韦伯统计分布的岩石损伤模型[J]. 湖南科技大学学报, 2014, 29(3): 29-32 ZHANG Huimei, LEI Lina, YANG Gengshe. Research on rock statistical damage model and determination of parameters[J]. Journal of Hunan University of Science & Technology, 2014, 29(3): 29-32 (in Chinese)
[10] 张庆贺, 袁亮, 方致远, 等. 基于多元监测信息融合的含裂隙类岩石材料破坏规律和预警方法[J]. 采矿与安全工程学报, 2022, 39(4): 797-807 ZHANG Qinghe, YUAN Liang, FANG Zhiyuan, et al. Failure law and early warning method of precast fractured rock specimen based on multi monitoring information fusion[J]. Journal of Mining and Safety Engineering, 2022, 39(4): 797-807 (in Chinese)
[11] 李天斌, 高美奔, 陈国庆, 等. 基于热-力-损伤本构参数的硬岩脆性评价方法[J]. 岩石力学与工程学报, 2022, 41(增刊1): 2593-2602 LI Tianbin, GAO Meiben, CHEN Guoqing, et al. A method for evaluating brittleness of hard rocks based on thermal-mechanical-damage constitutme parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(suppl1): 2593-2602 (in Chinese)
[12] 刘建, 赵国彦, 彭府华. 岩石介质弹塑性应变软化本构细观力学参数统计分布模型[J]. 煤炭学报, 2020, 45(增刊2): 692-705 LIU Jian, ZHAO Guoyan, PENG Fuhua. Statistical probability model for mesoscopic mechanical parameters of rock material under elastoplastic strain-softening framework[J]. Journal of China Coal Society, 2020, 45(suppl2): 692-705 (in Chinese)
[13] HUANG Y H, YANG S Q, ZHAO J. Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures[J]. Rock Mechanics and Rock Engineering, 2016, 49: 1-19
[14] WANG X, TIAN L G. Mechanical and crack evolution characteristics of coal-rock under different fracture-hole conditions: a numerical study based on particle flow code[J]. Environmental Earth Sciences, 2018, 77(8): 297
[15] 宋义敏, 李肖飞, 许海亮, 等. 基于裂纹界面摩擦滑动演化的岩石断裂研究[J]. 中国矿业大学学报, 2020, 49(2): 255-261 SONG Yimin, LI Xiaofei, XU Hailiang, et al. Research on rock fracture based on the evolution of friction sliding of crack intergace[J]. Journal of China University of Mining & Technology, 2020, 49(2): 255-261 (in Chinese)
[16] 汪杰, 付建新, 宋卫东, 等. 岩石-充填体组合模型力学特性及微裂纹演化特征颗粒流模拟[J]. 中国矿业大学学报, 2020, 49(3): 453-462 WANG Jie, FU Jianxin, SONG Weidong, et al. Particle flow simulation of mechanical properties and microcrack evolution characteristics of rock-backfill combined model[J]. Journal of China University of Mining & Technology, 2020, 49(3): 453-462 (in Chinese)
[17] YANG S Q, HUANG Y H, JING H W, et al. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J]. Engineering Geology, 2014, 178: 28-48
[18] ZHANG H Q, NUNOO S, TANNANT D D, et al. Numerical study of the evolution of cohesion and internal friction in rock during the pre-peak deformation process[J]. Arabian Journal of Geosciences, 2015, 8(6): 3501-3513
[19] ZHANG H Q, TANNANT D D, JING H W, et al. Evolution of cohesion and friction angle during microfracture accumulation in rock[J]. Natural Hazards, 2015, 77(1): 497-510
[20] YANG S Q, TIAN W L, HUANG Y H, et al. Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 194: 154-174
[21] ZHANG X P, ZHANG Q. Distinction of crack nature in brittle rock-like materials: a numerical study based on moment tensors[J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 1-9
[22] 赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考[J]. 地下空间与工程学报, 2016, 12(增刊2): 899-906 ZHAO Hongbao, HU Guilin, LI Wei, et al. Research progress and thinking on the crack propagation law of pre-fractured rock[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(suppl2): 899-906 (in Chinese)
[23] PENG J, WONG L N Y, TEH C, et al. Modeling micro-cracking behavior of bukit timah granite using grain-based model[J]. Rock Mechanics and Rock Engineering, 2017(1/2): 1-20
[24] 杨忠民, 高永涛, 吴顺川, 等. 基于等效岩体技术的节理参数对岩体强度影响性研究[J]. 中国矿业大学学报, 2018, 47(5): 979-986 YANG Zhongmin, GAO Yongtao, WU Shunchuan, et al. Study of the influence of joint parameters on rock mass strength based on equivalent rock mass technology[J]. Journal of China University of Mining & Technology, 2018, 47(5): 979-986 (in Chinese)
[25] CHEN G W, SONG L, ZHANG R R. Modeling acoustic attenuation of discrete stochastic fractured media[J]. Acta Geodaetica et Geophysica, 2018, 53(4): 679-690
[26] ZHU J B, ZHOU T, LIAO Z Y, et al. Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography[J]. International Journal of Rock Mechanics And Mining Sciences, 2018, 106: 198-212
[27] 石浩, 宋雷, 王敦显, 等. 基于裂纹长度幂律排布的损伤砂岩强度模型[J].中国矿业大学学报, 2022, 51(2): 263-272 SHI Hao, SONG Lei, WANG Dunxian, et al. Strength model for damaged sandstone based on power-law distribution of crack length[J]. Journal of China University of Mining and Technology, 2022, 51(2): 263-272 (in Chinese)
[28] DE DREUZY J R, DAVY P, BOUR O. Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture[J]. Water Resources Research, 2002, 38(12): 11-12
[29] 石浩, 张后全, 宋雷, 等. 动载下含预制裂纹砂岩的力学特性及破裂过程研究[J]. 振动与冲击, 2023, 42 (4): 28-38 SHI Hao, ZHANG Houquan, SONG Lei, et al. A study on mechanical properties and fracture process of sandstone with prefabricated cracks under dynamic loading[J]. Journal of Vibration and Shock, 2023, 42 (4): 28-38 (in Chinese)
[30] 石浩. 采动岩体强度演化及锚-岩相互作用研究[D]. 徐州: 中国矿业大学, 2021 SHI Hao. Research on strength evolution of mining rock mass and bolt-rock interaction[D]. Xuzhou: China University of Mining & Technology, 2021 (in Chinese)
[31] CASTRO-FILGUEIRA U, ALEJANO L R, ARZÙA J, et al. Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks [J]. Procedia Engineering, 2017, 191: 488-495
[32] 张慧梅, 李焕容, 刘小宁, 等. 基于Logistic理论的岩石损伤本构模型及参数探讨[J]. 武汉理工大学学报, 2018, 40(9): 67-71 ZHANG Huimei, LI Huanrong, LIU Xiaoning, et al. Rock Damage constitutive model and parameters based on logistic theory[J]. Journal of Wuhan University of Technology, 2018, 40(9): 67-71 (in Chinese)
[33] 董陇军, 李夕兵, 马举, 等. 未知波速系统中声发射与微震震源三维解析综合定位方法及工程应用[J]. 岩石力学与工程学报, 2017, 36(1): 186-197 DONG Longjun, LI Xibing, MA Ju, et al. Three-dimensional analytical comprehensive solutions for acoustic emission/microseismic sources of unknown velocity system[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 186-197 (in Chinese)
[34] 徐飞, 徐卫亚, 温森, 等. 基于PSO-PP的围岩稳定性评价[J]. 岩土力学, 2010, 31(11): 3651-3655 XU Fei, XU Weiya, WEN Sen, et al. Projection pursuit based on particle swarm optimization for evaluation of surrounding rock stability[J]. Rock and Soil Mechanics, 2010, 31(11): 3651-3655 (in Chinese)