论文:2023,Vol:41,Issue(6):1097-1106
引用本文:
庞欢, 刘逸茗, 林晔, 金朋, 刘敬一. 压电作动器振动抑制系统可靠性评估及优化设计[J]. 西北工业大学学报
PANG Huan, LIU Yiming, LIN Ye, JIN Peng, LIU Jingyi. Reliability evaluation and optimization design method of piezoelectric actuator vibration suppression system[J]. Journal of Northwestern Polytechnical University

压电作动器振动抑制系统可靠性评估及优化设计
庞欢1, 刘逸茗1, 林晔2, 金朋3, 刘敬一1
1. 长安大学 汽车学院, 陕西 西安 710064;
2. 北京机电工程研究所, 北京 100074;
3. 华中科技大学 航空航天学院, 湖北 武汉 430074
摘要:
作为结构振动抑制的有效手段,压电作动器振动抑制系统在结构振动控制中逐步得到应用。但是长服役期内压电作动器的性能退化/失效会导致整个振动抑制系统的服役可靠性退化,确定性优化方法得到的方案难以保证系统的服役可靠性。针对服役期内压电振动抑制系统的可靠性评估及优化设计问题,分析了压电作动器性能退化和失效下振动抑制系统的失效机理,构建了基于嵌套抽样和加权统计的振动抑制系统可靠性评估方法,解决了具有载荷共享和冗余特征的振动抑制系统可靠性评估问题,提出了基于主从式并行遗传算法的压电作动器可靠性布局优化方法,实现了作动器的位置和角度优化。通过算例证明了可靠性布局优化的可行性和有效性,为服役期内振动抑制系统的高可靠性设计提供理论基础,也可为结构振动控制这一工程问题提供新的解决思路。
关键词:    压电作动器振动抑制系统    嵌套抽样    加权统计    遗传算法    可靠性优化   
Reliability evaluation and optimization design method of piezoelectric actuator vibration suppression system
PANG Huan1, LIU Yiming1, LIN Ye2, JIN Peng3, LIU Jingyi1
1. School of Automobile, Chang'an University, Xi'an 710064, China;
2. Beijing Mechanical and Electrical Engineering Institute, Beijing 100074, China;
3. School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:
As an effective means of structural vibration suppression, piezoelectric actuator vibration suppression system(PAVSS) has been gradually applied in structural vibration control. However, the performance degradation or failure of piezoelectric actuator under long service life will lead to the degradation of service reliability of PAVSS, so the scheme obtained by deterministic optimization method is difficult to ensure the service reliability. Aiming at the reliability evaluation and optimal design of PAVSS in service, the failure mechanism considering of the performance degradation or failure of piezoelectric actuator is analyzed, and the reliability evaluation method based on nested sampling and weighted statistics is constructed, which solves the reliability evaluation problem of PAVSS with the characteristics of load-sharing and redundancy. A reliability-based optimization method based on master-slave parallel genetic algorithm is proposed to optimize the position and angle of the actuators. At last, the feasibility and effectiveness of the proposed method are proved by an example, which not only provides a theoretical basis for the high reliability design of PAVSS in service, but also provides a new solution for the engineering problem of structural vibration control.
Key words:    PAVSS    nested sampling    weighted statistics    genetic algorithm    reliability-based optimization   
收稿日期: 2022-11-24     修回日期:
DOI: 10.1051/jnwpu/20234161097
基金项目: 国家自然科学基金面上项目(71971030)与中央高校基本科研业务费(300102222114)资助
通讯作者: 刘敬一(1993-),长安大学讲师,主要从事机械可靠性评估理论及方法研究。e-mail:jingyiliu@chd.edu.cn     Email:jingyiliu@chd.edu.cn
作者简介: 庞欢(1987-),长安大学副教授,主要从事机械可靠性建模及评估方法研究。
相关功能
PDF(4225KB) Free
打印本文
把本文推荐给朋友
作者相关文章
庞欢  在本刊中的所有文章
刘逸茗  在本刊中的所有文章
林晔  在本刊中的所有文章
金朋  在本刊中的所有文章
刘敬一  在本刊中的所有文章

参考文献:
[1] 杨佳佳, 贺尔铭, 舒俊成. 自适应模糊控制在抑制海上漂浮式风力机振动响应中的应用[J]. 西北工业大学学报, 2021, 39(2): 241-248 YANG Jiajia, HE Erming, SHU Juncheng. Application of adaptive fuzzy control to suppression vibration response of floating offshore wind turbine[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 241-248 (in Chinese)
[2] 张书扬, 张顺琦, 李靖, 等. 基于PID算法的压电智能结构形状与主动振动控制[J]. 西北工业大学学报, 2017, 35(1): 74-81 ZHANG Shuyang, ZHANG Shunqi, LI Jing, et al. Shape control and active vibration control of piezoelectric smart structures with PID algorithm[J]. Journal of Northwestern Polytechnical University, 2017, 35(1): 74-81 (in Chinese)
[3] CRAWLEY E F, LUIS J. Use of piezoelectric acuators as elements of intelligent structures[J]. AIAA Journal, 1987, 25(10): 1373-1385
[4] GUPTA V, SHARMA M, THAKUR N. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(12): 1227-1243
[5] ZHANG X, KANG Z, LI M. Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation[J]. Structural and Multidisciplinary Optimization, 2014, 50(5): 799-814
[6] HU K, LI H. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells[J]. Journal of Sound and Vibration, 2018, 426: 166-185
[7] 胡骏, 亢战. 考虑可控性的压电作动器拓扑优化设计[J]. 力学学报, 2019, 51(4): 1073-1081 HU Jun, KANG Zhan. Topology optimization of piezoelectric actuator considering controllability[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1073-1081 (in Chinese)
[8] 吴曼乔, 朱继宏, 杨开科, 等. 面向压电智能结构精确变形的协同优化设计方法[J]. 力学学报. 2017, 49(2): 380-389 WU Manqiao, ZHU Jihong, YANG Kaike, et al. Integrated layout and topology optimization design of piezoelectric smart structure in accurate shape control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 380-389 (in Chinese)
[9] ZHANG C, WANG L, WU X, et al. A novel optimal configuration of sensor and actuator using a non-linear integer programming genetic algorithm for active vibration control[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(15): 2074-2081
[10] BIGLAR M, MIRDAMADI H R, DANESH M. Optimal locations and orientations of piezoelectric transducers on cylindrical shell based on gramians of contributed and undesired Rayleigh-Ritz modes using genetic algorithm[J]. Journal of Sound and Vibration, 2014, 333(5): 1224-1244
[11] 黄秀峰, 崔洪宇, 洪明, 等. 振动控制中压电元件优化配置研究进展[J]. 压电与声光, 2015, 37(5): 768-779 HUANG Xiufeng, CUI Hongyu, HONG Ming, et al. Advances in optimal allocation of piezoelectric sensor actuator in structural vibration control[J]. Piezoelectrics & Acoustooptics, 2015, 37(5): 768-779 (in Chinese)
[12] 谢丽, 王家秋, 钟哲强, 等. 压电陶瓷驱动器疲劳对变形镜校正带宽的影响[J]. 光子学报, 2019, 48(9): 0912005 XIE Li, WANG Jiaqiu, ZHONG Zheqiang, et al. Influence of fatigue of piezoelectric ceramic actuators on correction bandwidth of deformable mirrors[J]. Acta Photonica Sinica, 2019, 48(9): 0912005 (in Chinese)
[13] LEI J, WANG H, ZHANG C, et al. Comparison of several BEM-based approaches in evaluating crack-tip field intensity factors in piezoelectric materials[J]. International Journal of Fracture, 2014, 189: 111-120
[14] LEI J, ZHANG C. A simplified evaluation of the mechanical energy release rate of kinked cracks in piezoelectric materials using the boundary element method[J]. Engineering Fracture Mechanics, 2018, 188: 36-57
[15] MISHRA R K. A review on fracture mechanics in piezoelectric structures[J]. Materials Today: Proceedings, 2018, 5: 5407-5413
[16] MARTÍNEZ-AYUSO G, FRISWELL M I, KHODAPARAST H H, et al. Electric field distribution in porous piezoelectric materials during polarization[J]. Acta Materialia, 2019, 173: 332-341
[17] ZHENG D, LUO M, SWINGLER J. Multi-breakdown model for explaining the formation and growth of black spots in PZT capacitor under DC bias[J]. Sensors and Actuators A:Physical, 2016, 241: 197-202
[18] LOBODA V, SHEVELEVA A, Chapellec F. A dielectric breakdown model for an electrode along an interface between two piezoelectric materials[J]. Engineering Fracture Mechanics, 2020, 224: 106809
[19] CHEN P J, PENG J, LIU H, et al. The electromechanical behavior of a piezoelectric actuator bonded to a graded substrate including an adhesive layer[J]. Mechanics of Materials, 2018, 123: 77-87
[20] KHAN A, Kim H S, Youn B D. Modeling and assessment of partially debonded piezoelectric sensor in smart composite laminates[J]. International Journal of Mechanical Sciences, 2017, 132: 26-37
[21] GUO S X. An efficient third-moment saddlepoint approximation for probabilistic uncertainty analysis and reliability evaluation of structures[J]. Applied Mathematical Modelling, 2014, 38: 221-232
[22] LI Y L, WANG X J, WANG L. Non-probabilistic stability reliability measure for active vibration control system with interval parameters[J]. Journal of Sound and Vibration, 2017, 387:1-15
[23] WANG L, WANG X J, WU D. Non-probabilistic time-variant reliability assessment (NTRA) for the active control of vibration systems with convex uncertainties[J]. ISA Transactions, 2018, 83: 276-289
[24] 马天兵. 压电智能结构振动主动控制关键技术研究[D]. 南京:南京航空航天大学, 2014 MA Tianbing. Research on key technologies of active vibration control for piezoelectric smart structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2014 (in Chinese)
[25] 王滨生. 压电桁架结构系统可靠性分析[D]. 哈尔滨:哈尔滨工程大学, 2008 WANG Binsheng. System reliability analysis of piezoelectric truss structures[D]. Harbin: Harbin Engineering Uiversity,2008 (in Chinese)
[26] 王雄, 高英山, 张顺琦, 等. 基于zig-zag假设的压电阻尼层合结构机电耦合建模与分析[J]. 西北工业大学学报, 2022, 40(2): 407-413 WANG Xiong, GAO Yingshan, ZHANG Shunqi, et al. Electromechanical coupling modeling and analysis of piezoelectric damping laminated structures based on zig-zag hypothesis[J]. Journal of Northwestern Polytechnical University, 2022, 40(2): 407-413 (in Chinese)
[27] 张亚军. S-N疲劳曲线的数学表达式处理方法探讨[J]. 理化检验(物理分册), 2007(11): 563-565 ZHANG Yajun. Discussion on processing method for mathematical expression of S-N fatigue curve[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2007(11): 563-565 (in Chinese)