论文:2023,Vol:41,Issue(6):1080-1088
引用本文:
李卓越, 秦丽萍, 李广华, 孙孟舸, 杜鹏, 胡海豹, 黄潇, 陈效鹏. 筒口气团作用下航行体垂直出筒数值研究[J]. 西北工业大学学报
LI Zhuoyue, QIN Liping, LI Guanghua, SUN Mengke, DU Peng, HU Haibao, HUANG Xiao, CHEN Xiaopeng. Numerical simulation on underwater vertical launching process under effect of initial gas[J]. Journal of Northwestern Polytechnical University

筒口气团作用下航行体垂直出筒数值研究
李卓越1, 秦丽萍2, 李广华2, 孙孟舸3, 杜鹏1,2, 胡海豹1, 黄潇1,4, 陈效鹏1
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 中国船舶集团有限公司 第七一三研究所, 河南 郑州 450015;
3. 昆明船舶设备集团有限公司, 云南 昆明 650051;
4. 西北工业大学深圳研究院, 广东 深圳 518057
摘要:
潜射航行体出筒过程是水下发射的基础与前提,具有受力剧烈、时间短和非线性等特点。基于CFD方法,利用VOF多相流模型追踪气液界面,结合高分辨率交界面捕捉(HRIC)与重叠网格(零间隙)技术,建立了完整描述航行体水下垂直出筒的数学模型,系统研究了筒口气团与发射参数对流场与航行体载荷特性的影响规律。结果表明:随着筒口气团初始压强的增加,航行体受力变化周期增长,筒口气团演化过程减慢;发射深度的增加有助于缩短出筒过程中筒口气团脉动周期,肩部压强增加,有利于抑制航行体自然空化;横向来流会显著增加航行体横向受力与偏转力矩;横向流作用下,筒口气团脉动过程对航行体偏转力矩与横向受力影响较大。
关键词:    水下发射    数值模拟    多相流    筒口气团    重叠网格   
Numerical simulation on underwater vertical launching process under effect of initial gas
LI Zhuoyue1, QIN Liping2, LI Guanghua2, SUN Mengke3, DU Peng1,2, HU Haibao1, HUANG Xiao1,4, CHEN Xiaopeng1
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. No. 713 Research Institute, CSSC, Zhengzhou 450015, China;
3. Kunming Shipbuilding Equipment Co., Ltd, Kunming 650051, China;
4. Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
Abstract:
The exiting-tube process is the basis and premise of the underwater vertical launching process. which is a multiphase, rapid, nonlinear, complex issue. Based on RANS method, combined the VOF multiphase flow model, high-resolution interface capture (HRIC) and overlapping grid (zero gap) technology, a complete mathematical model to describe the underwater exiting-tube process of the vehicle is established. The effects of the initial gas and launch parameters on the flow field and the load characteristics of the vehicle are systematically obtained. The research results indicated that: With the increase of the initial pressure of the initial gas, the force period of the vehicle increases, and the evolution process of the initial gas slows down. The initial gas pulsation period can be shortened by increasing the launch depth, while increasing the pressure at the shoulder of the vehicle and suppressing the natural cavitation of the vehicle. The increase of the lateral flow velocity will significantly increase the lateral force and deflection moment of the vehicle. The initial gas's pulsation process has a greater influence on the deflection moment and lateral force of the vehicle.
Key words:    underwater vertical launching process    numerical simulation    multiphase flow    initial gas    overlapping grid   
收稿日期: 2023-01-02     修回日期:
DOI: 10.1051/jnwpu/20234161080
基金项目: 国家自然科学基金(52201380,52101373)与深圳市科创委基础研究项目(202308073003303)资助
通讯作者: 杜鹏(1989-),西北工业大学副教授,主要从事复杂水动力研究。e-mail:dupeng@nwpu.edu.cn     Email:dupeng@nwpu.edu.cn
作者简介: 李卓越(1996-),西北工业大学博士研究生,主要从事复杂水动力研究。
相关功能
PDF(4403KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李卓越  在本刊中的所有文章
秦丽萍  在本刊中的所有文章
李广华  在本刊中的所有文章
孙孟舸  在本刊中的所有文章
杜鹏  在本刊中的所有文章
胡海豹  在本刊中的所有文章
黄潇  在本刊中的所有文章
陈效鹏  在本刊中的所有文章

参考文献:
[1] 易淑群. 水下点火初期流场研究[D]. 北京: 中国舰船研究院, 2000 YI Shuqun. Research on the initial flow field of underwater ignition[D]. Beijing: China Ship Research and Development Academy, 2000 (in Chinese)
[2] 黄向明. 国外潜射导弹的现状和发展趋势(一)[J]. 现代军事, 2000(3): 39-41 HUANG Xiangming. The Current situation and development trends of submarine launched missiles abroad(1)[J]. Conmilit, 2000(3): 39-41 (in Chinese)
[3] 贺小艳. 水下气体射流数值研究[D]. 北京: 中国航天空气动力技术研究院, 2001 HE Xiaoyan. Numerical research on gas jet in water[D]. Beijing: China Academy of Aerospace Aerodynamics, 2001 (in Chinese)
[4] 邹鸿超. 发射环境及结构参数对潜射导弹出筒载荷影响分析[D]. 哈尔滨: 哈尔滨工业大学, 2013 ZOU Hongchao. Analysis of launch environment and structural parameters on tube-exit load of submarine-launched missiles impact[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese)
[5] 李强. 水下航行体连续垂直发射出筒过程多相流动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018 LI Qiang. Research on multiphase flow characteristics of continuous vertical launch of underwater vehicles[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese)
[6] DYMENT A, FLODROPS J P, PAQUET J B, et al. Gaseous cavity at the base of an underwater projectile[J]. Aerospace Science and Technology, 1998, 2(8): 489-504
[7] ZHANG X, WANG S, YU D. 2D axisymmetric CFD simulation of underwater torpedo launch tube flow[C]//2009 International Conference on Information Engineering and Computer Science, 2009: 1-4
[8] ZHANG W, JIA G, WU P, et al. Study on hydrodynamic characteristics of AUV launch process from a launch tube[J]. Ocean Engineering, 2021, 232: 109171
[9] 张红军, 陆宏志, 裴胤, 等. 潜射导弹出筒过程的三维非定常数值模拟研究[J]. 水动力学研究与进展A辑, 2010, 25(3): 406-415 ZHANG Hongjun, LU Hongzhi, PEI Yin, et al. Numerical investigation to vertical launching of submarine launching missile[J]. Chinese Journal of Hydrodynamics, 2010, 25(3): 406-415 (in Chinese)
[10] 任晓庆. 潜射航行体垂直发射过程三维数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2015 REN Xiaoqing. Three dimensional numerical simulation on vertical launch of underwater vehicle[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese)
[11] 王汉平, 吴菊华. 基于CFD的潜射导弹筒口压力场预测[J]. 弹道学报, 2008, 20(4): 73-76 WANG Hanping, WU Juhua. Forecast of pressure field near launch canister outlet for underwater-launched missile based on CFD[J]. Journal of Ballistics, 2008, 20(4): 73-76 (in Chinese)
[12] 王汉平, 吴友生, 程栋, 等. 潜射模拟弹弹射后效分析[J]. 船舶力学, 2010, 14(10): 1122-1128 WANG Hanping, WU Yousheng, CHENG Dong, et al. Analysis of ejection after-effect for underwater-launched emulating missile[J]. Journal of Ship Mechanics, 2010, 14(10):1122-1128 (in Chinese)
[13] 王亚东, 袁绪龙, 覃东升. 导弹水下发射筒口气泡特性研究[J]. 兵工学报, 2011, 32(8): 991-995 WANG Yadong, YUAN Xulong, QIN Dongsheng. Research on the outlet cavity features during the launch of submarine launched missile[J]. Acta Armamentarii, 2011, 32(8): 991-995 (in Chinese)
[14] 曹嘉怡, 鲁传敬, 陈鑫, 等. 导弹水下热发射出筒过程流动特性[J]. 固体火箭技术, 2011, 34(3): 281-284 CAO Jiayi, LU Chuanjing, CHEN Xin, et al. Flow behavior during uncorking process of an underwater hot-launched missile[J]. Journal of Solid Rocket Technology, 2011, 34(3): 281-284 (in Chinese)
[15] 赵汝岩, 翁璐, 徐珂文, 等. 潜载导弹水下弹射过程数值仿真[J]. 海军航空工程学院学报, 2012, 27(5): 512-516 ZHAO Ruyan, WEN Lu, XU Kewen, et al. Numerical simulation of the underwater launching process of submarine-based missile[J]. Journal of Naval Aviation University, 2012, 27(5): 512-516 (in Chinese)
[16] 蓝仁恩, 张志勇, 于殿君. 导弹水下垂直发射过程数值仿真分析[J]. 导弹与航天运载技术, 2013(5): 51-53 LAN Renen, ZHANG Zhiyong, YU Dianjun. Simulation and analysis of launching process in missile underwater vertical launching process[J]. Missiles and Space Vehicle, 2013(5): 51-53 (in Chinese)
[17] 邱海强, 袁绪龙, 王亚东, 等. 潜射导弹筒口气泡发展规律研究[J]. 兵工学报, 2014, 35(9): 1510-1514 QIU Haiqiang, YUAN Xulong, WANG Yadong, et al. Research on the law of development of outlet cavity during the launch of submarine launched missile[J]. Acta Armamentarii, 2014, 35(9): 1510-1514 (in Chinese)
[18] 张晓乐, 卢丙举, 胡仁海, 等. 水下航行体垂直发射筒口压力场L/E耦合数值模拟[J]. 舰船科学技术, 2016, 38(21): 151-155 ZHANG Xiaole, LU Bingju, HU Renhai, et al. L/E coupling numerical simulation of pressure field near launch canister outlet for underwater vehicle vertical launch[J]. Ship Science and Technology, 2016, 38(21): 151-155 (in Chinese)
[19] 张耐民, 赵阳, 魏海鹏, 等. 水下垂直发射航行体多孔排气气泡融合特性研究[J]. 船舶力学, 2018, 22(2): 135-143 ZHANG Naimin, ZHAO Yang, WEI Haipeng, et al. Study on air bleed fusion characteristics of vertically launched underwater vehicle[J]. Journal of Ship Mechanics, 2018, 22(2): 135-143 (in Chinese)
[20] 权晓波, 尤天庆, 张晨星, 等. 水下垂直发射航行体尾空泡振荡演化特性[J]. 兵工学报, 2021, 42(8): 1728-1734 QUAN Xiaobo, YOU Tianqing, ZHANG Chenxing, et al. Evolution properties of tail cavity oscillation of underwater launched vehicle[J]. Acta Armamentarii, 2021, 42(8): 1728-1734 (in Chinese)
[21] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001 TAO Wenquan. Numerical (Second Edition)[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001 (in Chinese)
[22] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605
相关文献:
1.杨恺昕, 罗凯, 黄闯, 李代金, 王谦, 古鉴霄, 李永丰.非回转体航行器高速斜入水过程研究[J]. 西北工业大学学报, 2023,41(4): 635-643
2.曹东刚, 何国强, 潘宏亮, 秦飞.三种空穴模型在可调汽蚀文氏管数值模拟中的对比研究[J]. 西北工业大学学报, 2013,31(4): 596-601