论文:2023,Vol:41,Issue(6):1044-1053
引用本文:
吴轩, 周洲, 王正平. 耦合分布螺旋桨的大柔性机翼静气弹研究[J]. 西北工业大学学报
WU Xuan, ZHOU Zhou, WANG Zhengping. Static aeroelastic analysis of very flexible wings coupled with distributed propellers[J]. Journal of Northwestern Polytechnical University

耦合分布螺旋桨的大柔性机翼静气弹研究
吴轩, 周洲, 王正平
西北工业大学 航空学院, 陕西 西安 710072
摘要:
分布式螺旋桨被广泛用作为大展弦比长航时无人机提供推进动力,其载荷和滑流会改变机翼的结构和气动特性,使几何非线性效应更加突出。针对分布式螺旋桨对大柔性机翼的气弹干扰问题,在涡流叶素理论基础上,采用滑流管模型快速计算滑流对机翼的诱导速度,实现螺旋桨与机翼的耦合气动建模;在共旋转法中通过坐标系的推导与转换,实现展向分布的螺旋桨与机翼非线性结构耦合建模;结合空间梁样条插值,建立了考虑分布式螺旋桨载荷和滑流影响的大柔性机翼非线性静气弹分析框架。大柔性机翼与分布式螺旋桨耦合的算例结果表明:非线性大变形使螺旋桨拉力产生机翼结构负扭转,造成约10%的升力损失和20%~40%的静稳定裕度减小;螺旋桨滑流通过影响机翼当地流速和绕流攻角,改变了结构变形分布,带来约2.5%的升力收益和2%~8%的静稳定裕度增加;螺旋桨靠近翼根时增升,靠近翼尖时减升且越靠近翼尖影响越显著;所建立的分析方法可为分布式螺旋桨与大柔性机翼的耦合设计提供指导。
关键词:    分布式螺旋桨    滑流    柔性机翼    几何非线性    静气弹   
Static aeroelastic analysis of very flexible wings coupled with distributed propellers
WU Xuan, ZHOU Zhou, WANG Zhengping
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Distributed propellers are widely used as propulsion for high-aspect-ratio long-endurance UAVs, and their load and slipstream will change the structural and aerodynamic characteristics of the wing, making geometric nonlinear effects more prominent. To address the aeroelastic interference of distributed propellers on the large flexible wing, firstly, on the basis of the vortex theory, a slipstream tube model is used to rapidly calculate the induced velocity of the slipstream, realizing the coupled aerodynamic modeling of the propeller and wing. Secondly, the coupled modelling of propellers and the nonlinear structure is achieved through the derivation and transformation of the coordinate system in the co-rotation method. Finally, combined with the space beam spline, a nonlinear static aeroelastic analysis framework for the large flexible wing considering the effects of distributed propellers is established. The simulation example of flexible wing with distributed propellers shows that the propeller pull will cause negative twisting of the wing due to large deformations, resulting in approximately 10% loss of lift and 20%-40% decrease in static stability margin; the propeller slipstream will change the local flow velocity and the angle of attack, bringing about 2.5% lift gain and 2%-8% increase in static stability margin; propellers increase lift when it is close to the wing root, but decrease when close to the wing tip, and the closer to the wing tip, the more significant the effect is. The analysis method established in this paper can provide guidance for the coupling design of distributed propellers and large flexible wings.
Key words:    distributed propellers    slipstream    flexible wing    geometric nonlinearity    static aeroelasticity   
收稿日期: 2022-12-02     修回日期:
DOI: 10.1051/jnwpu/20234161044
基金项目: 无人机特种技术重点实验室基金(2021-JCJQ-LB-071)、陕西省重点研发计划(2023-YBGY-373)与特色学科基础研究项目(G2022WD)资助
通讯作者: 周洲(1966-),西北工业大学教授,主要从事无人机系统总体设计研究。e-mail:zhouzhou@nwpu.edu.cn     Email:zhouzhou@nwpu.edu.cn
作者简介: 吴轩(1995-),西北工业大学博士研究生,主要从事无人机设计和气动弹性研究。
相关功能
PDF(3304KB) Free
打印本文
把本文推荐给朋友
作者相关文章
吴轩  在本刊中的所有文章
周洲  在本刊中的所有文章
王正平  在本刊中的所有文章

参考文献:
[1] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3): 13-29 HUANG Jun. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 13-29 (in Chinese)
[2] CHEN X, ZHOU Z. Inverse aerodynamic design for DEP propeller based on desired propeller slipstream[J]. Aerospace Science and Technology, 2020, 102(7): 105820
[3] PATIL M J. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft[D]. Atlanta: Georgia Institute of Technology, 1999
[4] PALACIOS R, CESNIK C E S. Nonlinear aeroelastic modeling and experiments of flexible wings[R]. AIAA-2006-2186, 2006
[5] 张驰. 柔性飞机气动弹性与飞行力学耦合特性研究[D]. 西安: 西北工业大学, 2020 ZHANG Chi. Research on coupled nonlinear aeroelasticity and flight dynamics of flexible aircraft[D]. Xi'an: Northwestern Polytechnical University, 2020(in Chinese)
[6] HODGES D H, PATIL M J, CHAE S. Effect of thrust on bending-torsion flutter of wings[J]. Journal of Aircraft, 2002, 39(2): 371-376
[7] AGOSTINELLI C, LIU C, ALLEN C B, et al. Propeller-flexible wing interaction using rapid computational methods[R]. AIAA-2013-2418, 2013
[8] TEIXEIRA P C, CESNIK C E S. Propeller effects on the response of high-altitude long-endurance aircraft[J]. AIAA Journal, 2019, 57(10): 4328-4342
[9] 谢长川, 张利娟, 刘燚,等. 螺旋桨/大柔性机翼静气动弹性快速分析方法[J]. 北京航空航天大学学报, 2015, 41(1): 7-13 XIE Changchuan, ZHANG Lijuan, LIU Yi, et al. Aeroelasticity quick analysis method of very propeller/flexible wing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 7-13(in Chinese)
[10] JONES, J R, CESNIK C E S. Preliminary flight test correlations of the x-hale aeroelastic experiment[J]. The Aeronautical Journal, 2015, 119(1217): 855-870
[11] 范中允, 周洲, 祝小平,等. 高鲁棒性的螺旋桨片条理论非线性修正方法[J]. 航空学报, 2018, 39(8): 32-45 FAN Zhongyun, ZHOU Zhou, ZHU Xiaoping, et al. High robustness nonlinear modification method for propeller blade element momentum theory[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 32-45(in Chinese)
[12] VELDHUIS L L. Propeller wing aerodynamic interference[D]. Delft: Technische Universiteit Delft, 2005: 353-364
[13] CRISFIELD M A, GALVANETTO U, JELENI G. Dynamics of 3D co-rotational beams[J]. Computational Mechanics, 1997, 20(6): 507-519
[14] 赵永辉, 黄锐. 高等气动弹性力学与控制[M]. 北京: 科学出版社, 2015: 63-70 ZHAO Yonghui, HUANG Rui. Advanced aeroelasticity and control[M]. Beijing: Science Press, 2015: 63-70(in Chinese)
[15] TEIXEIRA P. Propeller effects on very flexible aircraft[D]. Michigan: University of Michigan, 2019: 129-150
[16] BRANDT J B. Small-scale propeller performance at low speeds[D]. Champaign: University of Illinois, 2005
[17] MURUA J, PALACIOS R, GRAHAM J M R. Assessment of wake-tail interference effects on the dynamics of flexible aircraft[J]. AIAA Journal, 2012, 50(7):1575-1585
[18] 郭佳豪, 周洲, 范中允. 一种耦合CFD修正的螺旋桨快速设计方法[J]. 航空学报, 2020, 41(2): 72-81 GUO Jiahao, ZHOU Zhou, FAN Zhongyun. A quick design method of propeller coupled with CFD correction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 72-81(in Chinese)
[19] OTSUKA K, CARRE A D, PALACIOS R. Nonlinear aeroelastic analysis of high-aspect-ratio wings with a low-order propeller model[J]. Journal of Aircraft, 2022, 59(2): 292-306