论文:2023,Vol:41,Issue(5):996-1005
引用本文:
陆欢欢, 胡凯明, 郑晓亚, 校金友, 宋洪舟. 面向翼面展开的压电直线位移累积作动器轻量化设计[J]. 西北工业大学学报
LU Huanhuan, HU Kaiming, ZHENG Xiaoya, XIAO Jinyou, SONG Hongzhou. Lightweight design of piezoelectric linear displacement accumulation actuator for airfoil deployment[J]. Journal of Northwestern Polytechnical University

面向翼面展开的压电直线位移累积作动器轻量化设计
陆欢欢1, 胡凯明1, 郑晓亚2, 校金友2, 宋洪舟3
1. 中国计量大学 机电工程学院, 浙江 杭州 310018;
2. 西北工业大学 航天学院, 陕西 西安 710072;
3. 北京精密机电控制设备研究所, 北京 100076
摘要:
现代小型制导飞行器中常用的电磁式伺服舵机存在寄生磁场影响导航制导精度,同时其减速机构将增加舵机系统体积与质量的问题,而且电磁舵机的工作温度范围较小。近期发展的一种新型压电直线位移累积高功率密度作动器能够有效解决这些问题。建立了该作动器的虚拟样机模型,通过与实验数据进行对比,验证了虚拟样机模型的可靠性。为使作动器在满足翼面展开需求下质量最轻,采用Isight与Adams联合仿真,对压电作动器的压电堆外径、长度、激振频率等参数进行了优化,最终达到了50.8 W/kg输出功率,实现了与现有伺服电机相当的功率密度。
关键词:    压电直线作动器    尺蠖型    虚拟样机    高功率密度    轻量化设计   
Lightweight design of piezoelectric linear displacement accumulation actuator for airfoil deployment
LU Huanhuan1, HU Kaiming1, ZHENG Xiaoya2, XIAO Jinyou2, SONG Hongzhou3
1. School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China;
2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
3. Beijing Research Institute of Precise Mechatronic Sontrols, Beijing 100076, China
Abstract:
The electromagnetic servo steering gear commonly used in the modern small guided aircraft has parasitic electromagnetic fields that affect the navigation and guidance accuracy, and its deceleration mechanism will increase the volume and mass, and the operating temperature range of the electromagnetic steering gear is small. A recently developed piezoelectric linear displacement accumulating high-power density actuator can solve those problems effectively. A virtual prototype model of piezoelectric linear displacement accumulating high-power density actuator is established, and the reliability of the virtual prototype model is verified by comparing with the experimental data. In order to make the actuator with the lightest weight under the requirements of wing deployment, Isight and Adams co-simulation were used to optimize the parameters of the piezoelectric actuator, such as the outer diameter, length, and excitation frequency. Finally, the output power of 50.8 W/kg is achieved, which is comparable with the power density of the existing servo motor.
Key words:    piezoelectric linear actuator    inchworm    virtual prototype    high power density    lightweight design   
收稿日期: 2022-10-31     修回日期:
DOI: 10.1051/jnwpu/20234150996
基金项目: 2022航天伺服驱动与技术实验室开放基金(LASAT-2022-B06-02)资助
通讯作者: 郑晓亚(1980—),西北工业大学副教授,主要从事飞行器结构设计研究。e-mail:zhengxy_8042@nwpu.edu.cn     Email:zhengxy_8042@nwpu.edu.cn
作者简介: 陆欢欢(1998—),中国计量大学硕士研究生,主要从事智能材料对柔性变形翼控制研究。
相关功能
PDF(3185KB) Free
打印本文
把本文推荐给朋友
作者相关文章
陆欢欢  在本刊中的所有文章
胡凯明  在本刊中的所有文章
郑晓亚  在本刊中的所有文章
校金友  在本刊中的所有文章
宋洪舟  在本刊中的所有文章

参考文献:
[1] 张明月, 杨洪波, 章家保, 等. 改进自抗扰控制谐波式电动舵机伺服系统[J]. 光学精密工程, 2014, 22(1): 99-108 ZHANG Mingyue, YANG Hongbo, ZHANG Jiabao, et al. Servo system of harmonic drive electromechanical actuator using improved ADRC[J]. Optics and Precision Engineering, 2014, 22(1): 99-108 (in Chinese)
[2] 王佳奇. 新型压电驱动器及其在微型导弹舵机系统的应用[D]. 哈尔滨: 哈尔滨工程大学, 2020 WANG Jiaqi. Novel piezoelectric actuator and its application in miniature missiles servo system[D]. Harbin: Harbin Engineering University, 2020 (in Chinese)
[3] 于志远, 姚晓先, 潘帝伯, 等. 一种新型压电舵机的设计[J]. 北京理工大学学报, 2010, 30(5): 517-520 YU Zhiyuan, YAO Xiaoxian, PAN Dibo, et al. Design for a novel piezoelectric servo[J]. Transactions of Beijing Institute of Technology, 2010, 30(5): 517-520 (in Chinese)
[4] TAN C, LI B, LIU Y, et al. Multiphysics methodology for thermal modelling and quantitative analysis of electromagnetic linear actuator[J]. Smart Materials and Structures, 2019, 28(8): 087001
[5] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877
[6] WANG L, CHEN W, LIU J, et al. A review of recent studies on non-resonant piezoelectric actuators[J]. Mechanical Systems and Signal Processing, 2019, 133: 106254
[7] 钟相强, 黄卫清, 张轩, 等. 二级杠杆柔性铰链复合结构的双足压电直线电机[J]. 光学精密工程, 2018, 26(1): 86-94 ZHONG Xiangqiang, HUANG Weiqing, ZHANG Xuan, et al. Double-foot piezoelectric linear motor with secondary lever and fiexure hinge composite structure[J]. Optics and Precision Engineering, 2018, 26(1): 86-94 (in Chinese)
[8] 胡凯明, 文立华, 燕照琦. 角位移增大连杆轴向预压缩驱动器静、动态特性仿真分析[J]. 兵工学报, 2014, 35(8): 1258-1266 HU Kaiming, WEN Lihua, YAN Zhaoqi. Static and dynamic simulation and analysis on PBP actuator with a connecting rod mechanism to magnify output angular displacement[J]. Acta Armamentarii, 2014, 35(8): 1258-1266 (in Chinese)
[9] 曹小涛, 李德全, 李洪文, 等. 非共振式压电直线电机精密驱动及定位控制[J]. 光学精密工程, 2017, 25(8): 2139-2148 CAO Xiaotao, LI Dequan, LI Hongwen, et al. Precision drive and position control of non-resonance piezoelectric stcak linear motor[J]. Optics and Precision Engineering, 2017, 25(8): 2139-2148 (in Chinese)
[10] TIAN X, LIU Y, DENG J, et al. A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives[J]. Sensors and Actuators A: Physical, 2020, 306: 111971
[11] LIU Y F, LI J, HU X H, et al. Modeling and control of piezoelectric inertiavfriction actuators: review and future research directions[J]. Mechanical Sciences, 2015, 6(2): 95-107
[12] TIAN X, QUAN Q, WANG L, et al. An inchworm type piezoelectric actuator working in resonant state[J]. IEEE Access, 2018, 6: 18975-18983
[13] LOVERICH J J, KOOPMANN G H, LESIEUTRE G A, et al. A new piezoelectric actuator using a feed-screw for quasi-static motion accumulation——part I: experimental development[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(1): 73-81
[14] SUN H, SHI Y, WANG Q, et al. Modeling and design optimization of a new piezoelectric inchworm actuator with screw clamping mechanisms[J]. Micromachines, 2022, 13(12): 2038
[15] 朱鹏举, 时运来, 赵淳生. 一种新型大推力直线压电作动器[J]. 振动、测试与诊断, 2015, 35(1): 163-169 ZHU Pengju, SHI Yunlai, ZHAO Chunsheng. A new type of large-thrust linear piezoelectric actuator[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(1): 163-169 (in Chinese)
[16] 时运来, 程丁继, 张军, 等. 拉压负载下的大推力压电直线作动器[J]. 光学精密工程, 2019, 27(4): 832-841 SHI Yunlai, CHENG Dingji, ZHANG Jun, et al. Large-thrust piezoelectric linear actuator under tension and pressure load[J]. Optics and Precision Engineering, 2019, 27(4): 832-841 (in Chinese)
[17] WANG J, HUANG H, ZHAO H. Model-based optimization for structure dimension and driving signal of a stick-slip piezoelectric actuator[J]. Mechanical Systems and Signal Processing, 2022, 164: 108191
[18] 胡俊峰, 杨展宏. 尺蠖式直线微驱动器的设计[J]. 光学精密工程, 2018, 26(1): 122-131 HU Junfeng, YANG Zhanhong. A novel inchworm linear micro actuator[J]. Optics and Precision Engineering, 2018, 26(1): 122-131 (in Chinese)
[19] 李建平, 高云叶, 温建明, 等. 基于旋转磁铁箝位的压电尺蠖驱动器理论与试验分析[J]. 中国机械工程, 2020, 31(17): 2059-2063 LI Jianping, GAO Yunye, WEN Jianming, et al. Principle and experimental analysis of a novel piezoelectric inchworm actuator based on rotating magnet clamping[J]. China Mechanical Engineering, 2020, 31(17): 2059-2063 (in Chinese)
[20] 赵勃, 史维佳, 王丙泉, 等. 基于导通角调节的双足式尺蠖电机驱动[J]. 光学精密工程, 2020, 28(2): 363-371 ZHAO Bo, SHI Weijia, WANG Bingquan, et al. Driving method of V-shaped biped inchworm motor based on conduction angle regulation[J]. Optics and Precision Engineering, 2020, 28(2): 363-371 (in Chinese)
[21] 李雪梅, 王萌, 刘彦豪, 等. 航天器非火工分离装置接触建模与仿真[J]. 振动与冲击, 2023, 42(6): 298-306 LI Xuemei, WANG Meng, LIU Yanhao, et al. Contact Modeling and simulation analysis on the non-exposive separation device of a spacecraft[J]. Journal of Vibration and Shock, 2023, 42(6): 298-306 (in Chinese)
[22] LOVERICH J J. Development of a new high specific power piezoelectric actuator[D]. Pennsylvania, US: The Pennsylvania State University, 2004
[23] 《机械设计实用手册》编委会. 机械设计实用手册[M]. 3版. 北京: 机械工业出版社, 2012 《A Practical Handbook for Mechanical Design》 Editorial Board. A practical handbook for mechanical design[M]. 3rd ed. Beijing: China Machine Press, 2012 (in Chinese)
[24] 苏州工业园区盖尔威斯智能科技有限公司. KMF系列无框力矩电机[EB/OL](2021-06-20)[2022-10-11]. https://sip-gears.cn/pro/pro5/KMF/75.html