论文:2023,Vol:41,Issue(5):950-959
引用本文:
闻洋, 徐广茂, 李兆建. 钢管砼分体球型节点风电平面塔架的损伤分析[J]. 西北工业大学学报
WEN Yang, XU Guangmao, LI Zhaojian. Damage mechanism analysis of concrete-filled steel tube (CFST) spherical joint wind turbine plane tower[J]. Journal of Northwestern Polytechnical University

钢管砼分体球型节点风电平面塔架的损伤分析
闻洋, 徐广茂, 李兆建
内蒙古科技大学 土木工程学院, 内蒙古 包头 014010
摘要:
为研究钢管砼格构式分体球型节点风电平面塔架在地震作用下的破坏形态及损伤机理,对二榀以腹杆壁厚为参数的平面塔架进行低周反复荷载试验,分析其滞回曲线、骨架曲线等。同时通过ABAQUS有限元模拟对其进行验证对比,并在此基础上对腹杆管径比进行参数拓展分析。结果表明:塔架的破坏特征包括焊缝撕裂破坏、腹杆屈曲破坏和腹杆高强螺栓拉出破坏3种类型;增加腹杆壁厚可使塔架的滞回曲线更加饱满,耗能能力更强;塔架的极限承载力和延性系数均与腹杆管径比呈正相关变化,当腹杆管径比大于0.13时,极限承载力和延性系数的增幅均明显下降。为最大程度发挥塔架整体的受力性能,同时提高其经济性,在实际工程应用中,此类塔架的腹杆管径比宜取0.11~0.13。
关键词:    钢管混凝土    风电塔架    分体球型节点    损伤机理    有限元分析   
Damage mechanism analysis of concrete-filled steel tube (CFST) spherical joint wind turbine plane tower
WEN Yang, XU Guangmao, LI Zhaojian
School of Civil Engineering, Inner Mongolia University of Science Technology, Baotou 014010, China
Abstract:
In order to investigate the failure modes and damage mechanism of the concrete filled steel tubular latticed planar wind turbine tower with split spherical joints under earthquakes, the low cyclic loading tests were carried out on the two plane towers with web wall thickness as parameters, and their hysteresis curves and skeleton curves were analyzed. At the same time, it is verified via ABAQUS finite element simulation, and based on this analysis, the parameter expansion analysis of the web diameter ratio was carried out. The results indicate that the failure characteristics of the tower include three types: weld tear failure, web member buckling failure and web member high-strength bolt pull-out failure; to increase the thickness of the web member can make the hysteresis curve of the tower fuller and the energy dissipation capacity stronger effectively. The ultimate bearing capacity and ductility coefficient of the tower are positively correlated with the diameter ratio of web members. When the diameter ratio of web members was greater than 0.13, the increase in ultimate bearing capacity and ductility coefficient reduced obviously. In order to maximize the overall mechanical performance of the tower and improve the economy, in practical engineering applications, the diameter ratio of the web member of such towers should be taken as the range of 0.11~0.13.
Key words:    concrete filled steel tube    wind power tower    split spherical node    damage mechanism    finite element analysis   
收稿日期: 2022-11-04     修回日期:
DOI: 10.1051/jnwpu/20234150950
基金项目: 国家自然科学基金面上项目(51768056)与内蒙古自治区自然科学基金(2019MS05038)资助
通讯作者: 徐广茂(1996—),内蒙古科技大学硕士研究生,主要从事钢与混凝土组合结构及风电塔架研究。e-mail:15935274660@163.com     Email:15935274660@163.com
作者简介: 闻洋(1976—),内蒙古科技大学教授,主要从事钢与混凝土组合结构及风电塔架研究。
相关功能
PDF(4790KB) Free
打印本文
把本文推荐给朋友
作者相关文章
闻洋  在本刊中的所有文章
徐广茂  在本刊中的所有文章
李兆建  在本刊中的所有文章

参考文献:
[1] ZHANG X C, MA C, CHEN W P, et al. Global utilization and development of wind energy[J]. Advanced Materials Research, 2012, 608/609: 584-587
[2] 王军, 王志广, 张金全, 等. 风电装备发展现状与趋势[J]. 中国科技纵横, 2010, 9: 74 WANG Jun, WANG Zhiguang,ZHANG Jinquan, et al. Development status and trend of wind power equipment[J]. Chinese Science and Technology, 2010, 9: 74 (in Chinese)
[3] SHAIKHA A S, WANG L, PAROL J, et al. Reliability-based design optimisation framework for wind turbine towers[J]. Renewable Energy, 2021, 167: 942-953
[4] ABDULHAKIM-ADEOYE S, MEHMANPARAST A, WANG L, et al. Comparative study of structural reliability assessment methods for offshore wind turbine jacket support structures[J]. Applied Sciences, 2020, 10(3): 860
[5] 陈俊岭, 李哲旭, 黄冬平. 盆式调谐/颗粒阻尼器在风力发电塔振动控制中的实测研究[J]. 东南大学学报, 2017, 47(3): 571-575 CHEN Junling, LI Zhexu, HUANG Dongping. Site measurement of basin tuned and particle damper for vibration control in wind turbine tower[J]. Journal of Southeast University, 2017, 47(3): 571-575 (in Chinese)
[6] NEGM H M, MAALAWI K Y. Structural design optimization of wind turbine towers[J]. Computers & Structures, 2000, 74(6): 649-666
[7] GKANTOU M, MARTINEZ-VAZQUEZ P, BANIOTOPOULOS C. On the structural response of a tall hybrid onshore wind turbine tower[J]. Procedia Engineering, 2017, 199: 3200-3205
[8] 邹良浩, 李峰, 梁枢果, 等. 格构式塔架顺风向脉动风荷载空间相关性研究[J]. 湖南大学学报, 2019, 46(7): 96-103 ZOU Lianghao, LI Feng, LIANG Shuguo, et al. Study correlation of along-wind fluctuating wind load of lattice tower[J]. Journal of Hunan University, 2019, 46(7): 96-103 (in Chinese)
[9] 杨晨旭. 钢管混凝土格构式风电塔架新型装配式节点受力性能研究[D]. 包头:内蒙古科技大学, 2021 YANG Chenxu. Study on mechanical performance of new assembly type concrete-filled steel tubular lattice wind tower joint[D]. Baotou: Inner Mongolia University of Science Technology, 2021 (in Chinese)
[10] 闻洋, 王洪泽. 钢管混凝土格构式风电平面塔架的行为参数分析[J]. 建筑材料学报, 2020, 23(5): 1192-1199 WEN Yang, WANG Hongze. Study on mechanical behavior of concrete-filled steel tubular lattice for wind power generation plane tower[J]. Journal of Building Materials, 2020, 23(5): 1192-1199 (in Chinese)
[11] 闻洋, 吴夏至, 熊林, 等. 2种新型钢管混凝土格构式风电塔架节点损伤机理对比分析[J]. 湖南大学学报, 2023, 50(1): 69-77 WEN Yang, WU Xiazhi, XIONG Lin, et al. Comparative analysis on damage mechanism of two new types of concrete filled steel tubular lattice wind turbine tower joints[J]. Journal of Hunan University, 2023, 50(1): 69-77 (in Chinese)
[12] 李斌, 程亚超, 牛丽华. 钢管混凝土风电塔架K型焊接管板节点参数研究[J]. 重庆理工大学学报, 2020, 34(3): 179-184 LI Bin, CHENG Yachao, NIU Lihua. Finte elemnt analysis of mechanical behavior research on K-type welded tube-gusset joints in lattice CFST wind turbine tower[J]. Journal of Chongqing University of Technology, 2020, 34(3): 179-184 (in Chinese)
[13] 闻洋, 张军, 于洋, 等. 格构式钢管混凝土风电塔架螺栓球万向节点损伤机制分析[J]. 建筑结构学报, 2019, 40(增刊1): 339-346 WEN Yang, ZHANG Jun, YU Yang, et al. Damage mechanism analysis of bolted universal ball joints of latticed concrete-filled steel tubular wind turbine tower[J]. Journal of Building Structures, 2019, 40(suppl 1): 339-346 (in Chinese)
[14] 闻洋, 屈琳琳, 管丽佩. 格构式钢管混凝土风电塔架KT型节点受力性能试验研究[J]. 建筑结构学报, 2015, 36(9): 110-116 WEN Yang, QU Linlin, GUAN Lipei. Experimental study on mechanical behavior of KT-type joints of latticed concrete-filled steel tubular wind turbine tower[J]. Journal of Building Structures, 2015, 36(9): 110-116 (in Chinese)
[15] 闻洋, 于蛟, 孟春才. 格构式钢管砼风力发电塔架包裹球板分支节点屈服机制研究[J]. 重庆大学学报, 2022, 45(5): 135-146 WEN Yang, YU Jiao, MENG Chuncai. Study on yield mechanism of spherical plate branch joints in lattice concrete-filled steel tube wind turret[J]. Journal of Chongqing University, 2022, 45(5): 135-146 (in Chinese)
[16] 熊文. 格构式钢管混凝土风电塔架万向包裹装配式节点受力性能研究[D]. 包头:内蒙古科技大学, 2021 XIONG Wen. Research on mechanical performance of universally wrapped assembly joints of lattice concrete-filled steel tube wind power tower[D]. Baotou: Inner Mongolia University of Science Technology, 2021 (in Chinese)
[17] 韩林海. 钢管混凝土结构——理论与实践[M]. 3版. 北京: 科学出版社, 2016 HAN Linhai. Concrete-filled steel tube structures: theory and practice[M]. 3rd ed. Beijing: Science Press, 2016 (in Chinese)
[18] 刘威. 钢管混凝土局部受压时的工作机理研究[D]. 福州:福州大学, 2005 LIU Wei. Research on mechanism of concrete-filled steel tubes subjected to local compression[D]. Fuzhou: Fuzhou University, 2005 (in Chinese)
[19] 张劲, 王庆扬, 胡守营, 等. ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构, 2008, 38(8): 127-130 ZHANG Jin, WANG Qingyang, HU Shouying, et al. Parameter verification of ABAQUS concrete damage plasticity model[J]. Building Structure, 2008, 38(8): 127-130 (in Chinese)