论文:2023,Vol:41,Issue(5):942-949
引用本文:
石欣桐, 杨宇, 葛文杰, 王志刚, 孙侠生. 基于多节转动机构的变弯度机翼后缘结构设计[J]. 西北工业大学学报
SHI Xintong, YANG Yu, GE Wenjie, WANG Zhigang, SUN Xiasheng. Structure design of variable camber wing trailing edge based on multi-block rotating mechanism[J]. Journal of Northwestern Polytechnical University

基于多节转动机构的变弯度机翼后缘结构设计
石欣桐1, 杨宇1, 葛文杰2, 王志刚1, 孙侠生3
1. 中国飞机强度研究所 强度与结构完整性全国重点实验室, 陕西 西安 710065;
2. 西北工业大学 机电学院, 陕西 西安 710072;
3. 中国航空研究院, 北京 100012
摘要:
变弯度后缘可以使飞机在整个飞行包线内始终保持最佳的气动性能,从而达到减少飞机燃油消耗以及空气污染物排放的最终目的,是新一代民用飞机的重要特征和发展方向之一。为解决大型飞机变弯度后缘高承载与大变形之间的设计矛盾,提出了一种基于多节转动的变弯度机翼后缘结构方案,建立了以实现光滑连续变形为目标的多节转动机构参数化优化方法,完成了多节转动变弯度后缘结构的设计与制备,并搭建地面试验平台对变弯度后缘原理样件的变形功能进行了验证。结果表明,通过所提出的多节转动机构优化方法设计得到的变弯度机翼后缘可以实现光滑连续变形,原理样机实际变形范围为上偏3.9°至下偏12.5°,与设计目标误差为16.7%,为解决大型飞机变弯度结构工程应用问题提供了设计参考。
关键词:    变形机翼    变弯度后缘    多节转动机构   
Structure design of variable camber wing trailing edge based on multi-block rotating mechanism
SHI Xintong1, YANG Yu1, GE Wenjie2, WANG Zhigang1, SUN Xiasheng3
1. National Key Laboratory of Strength and Structural Integrity, Aircraft Strength Research Institute of China, Xi'an 710072, China;
2. School of Mechatronics, Northwestern Polytechnical University, Xi'an 710072, China;
3. Chinese Aeronautical Establishment, Beijing 100027, China
Abstract:
The variable camber trailing edge enables the aircraft to maintain the best aerodynamic performance throughout the flight envelope, so as to achieve the ultimate goal of reducing aircraft fuel consumption and air pollutant emissions. It is one of the important characteristics and development direction of the new generation civil aircraft. In order to solve the contradiction between the high load-bearing and the large deformation of the variable camber trailing edge of large aircraft, a structure scheme for variable camber trailing edge based on multi-block rotation was proposed. A parametric optimization method was established for smooth and continuous deformation of multi-block rotating mechanism. The multi-block rotating structure and driving system of variable camber trailing edge were designed, and the deformation function of the variable camber trailing edge demonstrator was preliminarily verified by ground test. The result shows that variable camber wing trailing edge designed by using the present optimization method of multi-block rotating mechanism can realize smooth and continuous morphing. The actual deformation range of the demonstration is 3.9 degrees up to 12.5 degrees down, and the error with the design target is 16.7%. It provides a design reference for solving the engineering application problem of variable camber structure for large aircraft.
Key words:    morphing wing    variable camber trailing edge    multi-block rotating mechanism   
收稿日期: 2022-10-25     修回日期:
DOI: 10.1051/jnwpu/20234150942
通讯作者: 杨宇(1980—),中国飞机强度研究所研究员,主要从事智能结构与结构健康监测研究。e-mail:yangyu@cae.ac.cn     Email:yangyu@cae.ac.cn
作者简介: 石欣桐(1991—),中国飞机强度研究所工程师,主要从事智能结构与结构健康监测研究。
相关功能
PDF(4351KB) Free
打印本文
把本文推荐给朋友
作者相关文章
石欣桐  在本刊中的所有文章
杨宇  在本刊中的所有文章
葛文杰  在本刊中的所有文章
王志刚  在本刊中的所有文章
孙侠生  在本刊中的所有文章

参考文献:
[1] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2014, 35(1): 29-45 LENG Jinsong, SUN Jian, LIU Yanju. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29-45 (in Chinese)
[2] 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1): 136-155 WANG Binwen, YANG Yu, QIAN Zhansen, et al. Review of technical development of variable camber wing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 136-155 (in Chinese)
[3] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877
[4] 倪迎鸽, 杨宇. 自适应机翼翼型变形的研究现状及关键技术[J]. 航空工程进展, 2018, 9(3): 297-308 NI Yingge, YANG Yu. Research on the status and key technology in morphing airfoil of adaptive wings[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3): 297-308 (in Chinese)
[5] YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7): 271-278
[6] PECORA R. Multi-modal morphing wing flaps for next generation green regional aircraft: the cleansky challenge[C]//ASME Conference on Smart Materials, San Antonio, Texas, USA, 2018
[7] BILGEN O, KOCHERSBERGER K B, INMAN D J, et al. Novel, bidirectional, variable camber airfoil via macro-fiber composite actuators[J]. Journal of Aircraft, 2010, 47(1): 303-314
[8] PARADIES R, CIRESA P. Active wing design with integrated flight control using piezoelectric macro fiber composites[J]. Smart Materials & Structures, 2009, 18(3): 035010
[9] VOS R, BREUKER R D, BARRETT R M, et al. Morphing wing flight control via postbuckled precompressed piezoelectric actuators[J]. Journal of Aircraft, 2007, 44(4): 1060-1068
[10] BILGEN O, BUTT L M, DAY S R, et al. A novel unmannedaircraft with solid-state control surfaces: analysis and flight demonstration[J]. Journal of Intelligent Material Systems & Structures, 2013, 24(2): 147-167
[11] LENG J S, LIU L W, LYU H B, et al. Applications of shape memory polymer composite structures in aerospace[J]. JEC Composites Magazine, 2012, 72: 36-38
[12] CONCILIO A, DIMINO I, PECORA R. SARISTU: adaptive trailing ddge device (ATED) design process review[J]. Chinese Journal of Aeronautics, 2020, 34(7):24
[13] REA F, AMOROSO F, PECORA R, et al. Structural design of a multifunctional morphing fowler flap for a twin-prop regional aircraft[C]//ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2018
[14] AMEDURI S, CONCILIO A, DIMINO I, et al. Airgreen2-Clean Sky 2 programme: adaptive wing technology maturation, challenges and perspectives[C]//ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2018
[15] 赵飞, 葛文杰, 张龙, 等. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8): 19-22 ZHAO Fei, GE Wenjie, ZHANG Long, et al. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8): 19-22 (in Chinese)
[16] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J]. 航空学报, 2009, 30(6): 1028-1034 YANG Zhichun, XIE Jiang. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1028-1034 (in Chinese)
[17] 张平, 周丽, 邱涛. 基于可变形蜂窝的柔性蒙皮力学性能分析与结构设计[J]. 固体力学学报, 2013,34(5): 433-440 ZHANG Ping, ZHOU Li, QIU Tao. Mechanical property analysis and structural design of flexible skin based on deformable honedycomb[J]. Chinese Journal of Solid Mechanics, 2013, 34(5): 433-440 (in Chinese)
[18] ZHONG Min, ZHENG Sui, WANG Ganglin, et al. Correlation analysis of combined and separated effects of wing deformation and support system in the CAE-AVM study[J]. Chinese Journal of Aeronautics, 2018, 31(3): 429-438
[19] 李春鹏, 张铁军, 钱战森. 基于代理模型的自适应后缘翼型气动优化设计[J]. 航空科学技术, 2019, 30(11): 41-47 LI Chunpeng, ZHANG Tiejun, QIAN Zhansen. Aerodynamic optimization design of the airfoil with adaptive trailing edge based on surrogate model[J]. Aeronautical Science & Technology, 2019, 30(11): 41-47 (in Chinese)
[20] ARENA M, NAGEL C, PECORA R, et al. Static and dynamic performance of a morphing trailing edge concept with high-damping elastomeric skin[J]. Aerospace, 2019, 6(2): 22
[21] 李林涛, 李海龙, 王冲, 等. 驱动滚珠丝杠的伺服电机旋转扭矩计算[J]. 机械工程师, 2014, 277(7): 214-215 LI Lintao, LI Hailong, WANG Chong, et al. Calculation of rotation torque of servo motor driving ball screw[J]. Journal of Mechanical Engineer, 2014, 277(7): 214-215 (in Chinese)
[22] PECORA R, CONCILIO A, DIMINO I, et al. Structural design of an adaptive wing trailing edge for enhanced cruise performance[C]//Proceedings of the 24th AIAA/AHS Adaptive Structures Conference, 2016