论文:2023,Vol:41,Issue(5):932-941
引用本文:
李坤鹏, 李彪, 张彦军, 周颜, 张腾, 李亚智. 基于应变监控数据的金属结构疲劳裂纹量化模型研究[J]. 西北工业大学学报
LI Kunpeng, LI Biao, ZHANG Yanjun, ZHOU Yan, ZHANG Teng, LI Yazhi. A fatigue crack quantification model for metallic structure based on strain monitoring data[J]. Journal of Northwestern Polytechnical University

基于应变监控数据的金属结构疲劳裂纹量化模型研究
李坤鹏1, 李彪1, 张彦军2, 周颜2, 张腾3, 李亚智1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 航空工业第一飞机设计研究院强度设计研究所, 陕西 西安 710089;
3. 空军工程大学 航空工程学院, 陕西 西安 710038
摘要:
实时获取金属结构的疲劳裂纹长度是开展飞机单机寿命监控和剩余寿命估算的基础。采用深度学习方法,提出了一种基于应变监控数据的金属结构疲劳裂纹长度预测模型,通过构造循环对抗网络模型、裂纹尺寸的分类模型和裂纹长度的量化模型,分别实现了含裂纹结构的应变试验数据与有限元模型数据的映射、裂纹尺寸范围的准确分类、裂纹长度的精确量化。将上述方法应用于中心带孔金属板在随机载荷谱下的疲劳裂纹监测,有效实现了疲劳裂纹长度的实时预测。与试验结果对比表明,单孔板的孔边疲劳裂纹长度预测误差小于1 mm,满足工程实际的需求。
关键词:    疲劳裂纹    应变监测    深度学习    数据驱动模型    疲劳裂纹预测   
A fatigue crack quantification model for metallic structure based on strain monitoring data
LI Kunpeng1, LI Biao1, ZHANG Yanjun2, ZHOU Yan2, ZHANG Teng3, LI Yazhi1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Department of Strength Design, AVIC the First Aircraft Institute, Xi'an 710089, China;
3. School of Aeronautic Engineering, Air Force Engineering University, Xi'an 710038, China
Abstract:
Obtaining the real-time fatigue crack length of a metallic structure is the prerequisite of the fatigue life monitoring and residual life estimation for an aircraft. This paper proposed a metallic structure's fatigue crack prediction model using strain monitoring data based on deep learning method. A cycle consistent adversarial network was developed to map the strain monitoring data from experimental measurement with those from finite element modeling. A crack size classification model and a crack length quantification model were proposed to classify the crack size range and identify the exact crack length, respectively. The proposed model was applied to predict the fatigue crack growth in centeral hole metallic plates subjected to random loading spectrum. The results showed that the prediction is effective and accurate.
Key words:    fatigue crack    strain monitoring    deep learning    data driven model    fatigue crack prediction   
收稿日期: 2022-10-14     修回日期:
DOI: 10.1051/jnwpu/20234150932
基金项目: 国家自然科学基金(12072272,52005507)与国家级重点实验室基金(2022-xxxx-LB-020-04,HTKJ2021KL011003)资助
通讯作者: 李彪(1987—),西北工业大学副教授,主要从事航空结构疲劳与断裂研究。e-mail:libiao@nwpu.edu.cn     Email:libiao@nwpu.edu.cn
作者简介: 李坤鹏(1996—),西北工业大学硕士研究生,主要从事航空结构疲劳与断裂研究。
相关功能
PDF(2871KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李坤鹏  在本刊中的所有文章
李彪  在本刊中的所有文章
张彦军  在本刊中的所有文章
周颜  在本刊中的所有文章
张腾  在本刊中的所有文章
李亚智  在本刊中的所有文章

参考文献:
[1] 陈致名, 唐宁, 范华飞. 复杂结构飞行器的飞行载荷建模方法研究[J]. 航空工程进展, 2022, 13(2): 45-50 CHEN Zhiming, TANG Ning, FAN Huafei. Flight load modeling method optimized for complex structures[J]. Advances in Aeronautical Science and Engineering, 2022, 13(2): 45-50 (in Chinese)
[2] 杨智春, 于哲峰. 结构健康监测中的损伤检测技术研究进展[J]. 力学进展, 2004, 34(2): 215-223 YANG Zhichun, YU Zhefeng. Progress of damage detection for structural health monitoring[J]. Advances in Mechanics, 2004, 34(2): 215-223 (in Chinese)
[3] 常琦, 杨维希, 赵恒, 等. 基于多传感器的裂纹扩展监测研究[J]. 航空学报, 2020, 41(2): 226-237 CHANG Qi, YANG Weixi, ZHAO Heng, et al. A multi-sensor based crack propagation monitoring research[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 226-237 (in Chinese)
[4] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533
[5] WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[J]. Effects Environ Complex Load History Fatigue Life, 1970, 462: 1-14
[6] FOREMAN R G, PEARY V E, ENGLE R M. Numerical analysis of crack propagation in cyclic-loaded structures[J]. Journal of Basic Engineering, 1967, 89(3): 459-463
[7] 胡昌华, 施权, 司小胜, 等. 数据驱动的寿命预测和健康管理技术研究进展[J]. 信息与控制, 2017, 46(1): 72-82 HU Changhua, SHI Quan, SI Xiaosheng, et al. Data-driven life prediction and health management: state of the art[J]. Information and Control, 2017, 46(1): 72-82 (in Chinese)
[8] 张卫方, 何晶靖, 阳劲松, 等. 面向飞行器结构的健康监控技术研究现状[J]. 航空制造技术, 2017(19): 38-47 ZHANG Weifang, HE Jingjing, YANG Jinsong, et al. Research status on structural health monitoring technology for aircraft structures[J]. Aeronautical Manufacturing Technology, 2017(19): 38-47 (in Chinese)
[9] RENAUD G, LIAO M, BOMBARDIER Y. Demonstration of an airframe digital twin framework using a CF-188 full-scale component test[C]//Proceedings of the 30th Symposium of the International Committee on Aeronautical Fatigue, Krakow, 2019
[10] 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 113-141 DONG Leiting, ZHOU Xuan, ZHAO Fubin, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 113-141 (in Chinese)
[11] 曹俊. 裂纹扩展的实时健康监测技术研究[D]. 南京:南京航空航天大学, 2006 CAO Jun. Research on real-time structural health monitoring for crack growth[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese)
[12] 吴磊, 纪国宜. 卷积神经网络在在线结构健康监测中的应用[J]. 噪声与振动控制, 2019, 39(4): 200-204 WU Lei, JI Guoyi. Application of convolutional neural network for on-line structural health monitoring[J]. Noise and Vibration Control, 2009, 39(4): 200-204 (in Chinese)
[13] DEANS W F, RICHARDS C E. A simple and sensitive method of monitoring crack and load in compact fracture mechanics specimens using strain gages[J]. Journal of Testing and Evaluation, 1979, 7(3): 147-154
[14] CROCOMBE A D, ONG C Y, CHAN C W M, et al. Investigating fatigue damage evolution in adhesively bonded structures using backface strain measurement[J]. The Journal of Adhesion, 2002, 78(9): 745-776
[15] NEWMAN JR J C, DAWICKE D S, SESHADRI B R. Residual strength analyses of stiffened and unstiffened panels——part I: laboratory specimens[J]. Engineering Fracture Mechanics, 2003, 70(3/4): 493-507
[16] ANGULO N, YANG H, TANG J, et al. Structural health monitoring of crack initiation and growth in mooring chains using FEA methods for acoustic emission characterisation[J]. Journal of Acoustic Emission, 2019, 36: S107-S111
[17] WANG M, FENG S, INCECIK A, et al. Structural fatigue life prediction considering model uncertainties through a novel digital twin-driven approach[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114512
[18] LI C, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941
[19] 庞杰. 混凝土坝表观裂纹的图像识别关键技术研究[D]. 绵阳:西南科技大学, 2021 PANG Jie. Research on key technologies for image recognition for surface cracks of concrete dams[D]. Mianyang: Southwest University of Science and Technology, 2021 (in Chinese)
[20] 王珲玮. 基于神经网络的飞行器力载荷识别算法研究[D]. 杭州:浙江大学, 2018 WANG Hunwei. Research on load identification algorithm of aircraft based on neural network[D]. Hangzhou: Zhejiang University, 2018 (in Chinese)
[21] TRIVAILO P M, CARN C L. The inverse determination of aerodynamic loading from structural response data using neural networks[J]. Inverse Problems in Science & Engineering, 2006, 14(4): 379-395
[22] 郑星, 王志国. 基于实测应变的飞机结构疲劳裂纹检测方法[J]. 机械制造与自动化, 2021, 50(2): 236-240 ZHENG Xing, WANG Zhiguo. Fatigue crack detection method of aircraft structure based on measured strain[J]. Machine Building and Automation, 2021, 50(2): 236-240 (in Chinese)
[23] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision, 2017: 2242-2251
[24] QIN Y, WU X, LUO J. Data-model combined driven digital twin of life-cycle rolling bearing[J]. IEEE Trans on Industrial Informatics, 2022, 18: 1530-1540