论文:2023,Vol:41,Issue(5):924-931
引用本文:
雷一鸣, 杨涓, 耿海, 吴先明, 牟浩, 付瑜亮. 2 cm ECRIT联结磁场对羽流中和的影响[J]. 西北工业大学学报
LEI Yiming, YANG Juan, GENG Hai, WU Xianming, MOU Hao, FU Yuliang. Influences of coupling magnetic field of 2 cm electron cyclotron resonance ion thruster on plume neutralization[J]. Journal of Northwestern Polytechnical University

2 cm ECRIT联结磁场对羽流中和的影响
雷一鸣1, 杨涓1, 耿海2, 吴先明2, 牟浩1, 付瑜亮1
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 兰州空间技术物理研究所 真空技术与物理重点实验室, 甘肃 兰州 730000
摘要:
电子回旋共振离子推力器(electron cyclotron resonance ion thruster,ECRIT)外部联结磁场是影响羽流中和过程以及中和器耦合电压的因素之一。联结磁场随离子源和中和器安装方位及其内部磁极方向的不同而不同,计算联结磁场分布规律、实验研究磁场对羽流中和的影响是非常重要的工作。针对离子源的2个功率和2个流量,加速电压350~1 450 V内,开展中和实验,研究离子源与中和器磁极方向和位置关系的变化对离子束流引出和最高耦合电压大小的影响规律。结果表明,离子束流引出不受磁极方向和离子源与中和器安装方位的影响。离子源与中和器相对垂直安装时能降低中和器耦合电压,同时通过改变中和器磁极方向使其与离子源磁极方向相反也能降低中和器耦合电压。当离子源与中和器磁极方向相反且垂直安装时,中和器耦合电压最低。
关键词:    束流引出    羽流中和    耦合电压   
Influences of coupling magnetic field of 2 cm electron cyclotron resonance ion thruster on plume neutralization
LEI Yiming1, YANG Juan1, GENG Hai2, WU Xianming2, MOU Hao1, FU Yuliang1
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics for Space Technology, Lanzhou 730000, China
Abstract:
An electron cyclotron resonance ion thruster (ECRIT) has advantages of long service life and simple structure. The external coupling magnetic field of the ECRIT is one of factors that influences the plume neutralization process and coupling voltage of the neutralizer. The coupling magnetic field varies with the installation direction of the ion source and neutralizer as well as the direction of the internal magnetic pole. Calculating the distribution law of the coupling magnetic field and experimentally studying the influence of the coupling magnetic field on plume neutralization are very important. This paper focuses on two power rates and two flow rates of the ion source and conducts experiments on neutralization within the acceleration voltage range of 350 to 1 450 V to study the influence of changes in the direction and position of the ion source and the influence of the neutralizer's magnetic pole on the ion beam extraction and maximum coupling voltage. The results indicate that the ion beam extraction is not influenced by the direction of the magnetic pole and the installation direction of the ion source and neutralizer. When the ion source is installed relatively perpendicular to the neutralizer, its coupling voltage is reduced. At the same time, changing the direction of the magnetic pole of the neutralizer into the opposite of the direction of the magnetic pole of the ion source also reduces the coupling voltage of the neutralizer. When the ion source is installed perpendicular to the magnetic pole of the neutralizer in the opposite direction, the coupling voltage is the lowest.
Key words:    beam extraction    plume neutralization    coupling voltage   
收稿日期: 2022-10-13     修回日期:
DOI: 10.1051/jnwpu/20234150924
基金项目: 国家自然科学基金(11875222)资助
通讯作者: 杨涓(1964—),西北工业大学教授,主要从事电推进研究。e-mail:yangjuan@nwpu.edu.cn     Email:yangjuan@nwpu.edu.cn
作者简介: 雷一鸣(1997—),西北工业大学硕士研究生,主要从事电推进研究。
相关功能
PDF(3365KB) Free
打印本文
把本文推荐给朋友
作者相关文章
雷一鸣  在本刊中的所有文章
杨涓  在本刊中的所有文章
耿海  在本刊中的所有文章
吴先明  在本刊中的所有文章
牟浩  在本刊中的所有文章
付瑜亮  在本刊中的所有文章

参考文献:
[1] PENCIL E J, KAMHAWI H, ARRINGTON L. Overview of NASA's pulsed plasma thruster development program[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004
[2] MARCUCCIO S. The design of micronewton FEEP thrusters for disturbance reduction systems[C]//Proceedings of 28th International Electric Propulsion Conference, 2003
[3] 吴汉基, 蒋远大, 张志远. 电推进技术的应用与发展趋势[J]. 推进技术, 2003, 24(5): 385-392 WU Hanji, JIANG Yuanda, ZHANG Zhiyuan. Application and development trend of electric propulsion technology[J]. Journal of Propulsion Technology, 2003, 24(5): 385-392 (in Chinese)
[4] 朱毅麟. 电推进的现状与展望[J]. 上海航天, 1998, 15(3): 48-53 ZHU Yilin. Current situation and prospect of electric propulsion[J]. Aerospace Shanghai, 1998, 15(3): 48-53 (in Chinese)
[5] 金逸舟, 杨涓, 冯冰冰, 等. 不同磁路电子回旋共振离子源引出实验[J]. 物理学报, 2015, 64(21): 215202 JIN Yizhou, YANG Juan, FENG Bingbing, et al. Electron cyclotron resonance ion source extraction experiment with different magnetic circuit[J]. Acta Physica Sinica, 2015, 64(21): 215202 (in Chinese)
[6] WEN J M, PENG S X, REN H T, et al. A miniaturized 2.45 GHz ECR ion source at Peking University[J]. Chinese Physics B, 2018, 27(5): 055204
[7] IOANNIS G M, GARY A J, IRA K, et al. Plume modeling of stationary plasma thrusters and interactions with the express-a spacecraft[J]. Journal of Spacecraft and Rockets, 2002, 39(6): 894-903
[8] KUNINAKA H, MOLINA-MORALES P. Spacecraft charging due to lack of neutralization on ion thrusters[J]. Acta Astronautica, 2004, 55(1): 27-38
[9] FARNELL C C, WILLIAMS J D, WILBUR P J. Numerical simulation of ion thruster optics[C]//28th International Electric Propulsion Conference, 2003
[10] JIA Y H, CHEN J J, GUO N, et al. 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502
[11] KAFAFY R. Immersed finite element particle-in-cell simulations of ion propulsion[D]. Virginia: Virginia Polytechnic Instititute and State University, 2005
[12] 操慧珺, 楚豫川, 曹勇, 等. 离子推进器中离子束中和及推进过程的全粒子数值模拟[J]. 高压电技术, 2014(7): 2119-2124 CAO Huijun, CHU Yuchuan, CAO Yong, et al. Full particle numerical simulation of ion beam neutralization and propulsion in ion thrusters[J]. High Voltage Engineering, 2014(7): 2119-2124 (in Chinese)
[13] FILIPPO C, ADRIÁN D, MARIO M, et al. Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects[J]. Plasma Sources Science and Technology, 2017, 26(12): 125008
[14] JESUS P, FILIPPO C, MARIO M, EDUARDO A. Formation and neutralization of electric charge and current of an ion thruster plume[J]. Plasma Sources Science and Technology, 2021, 30(10): 105023
[15] KOIZUMI H, KUNINAKA H. Ion beam extraction and electron emission from the miniature microwave discharge ion engine μ1[C]//International Electric Propulsion Conference, 2009
[16] 夏旭, 杨涓, 耿海, 等. 不同磁路下微型ECR中和器电子引出的模拟研究[J]. 物理学报, 2022, 71(4): 045201 XIA Xu, YANG Juan, GENG Hai, et al. Simulation of electron extraction in micro-ECR neutralizer with different magnetic circuits[J]. Acta Physica Sinica, 2022, 71(4): 045201 (in Chinese)
[17] 夏旭, 杨涓, 金逸舟, 等. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究[J]. 物理学报, 2019, 68(23): 235202 XIA Xu, YANG Juan, JIN Yizhou, et al. Experimental study on the influence of magnetic circuit and antenna position on the performance of a 2 cm electron cyclotron resonance ion thruster[J]. Acta Physica Sinica, 2019, 68(23): 235202 (in Chinese)
[18] 黄益智. 氙工质微推力ECR离子推力器实验研究[D]. 西安:西北工业大学, 2018 HUANG Yizhi. Experimental study on the micro-thrust ECR ion thruster[D]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese)
[19] 汤明杰, 杨涓, 金逸舟, 等. 微型电子回旋共振离子推力器离子源结构优化实验研究[J]. 物理学报, 2015, 64(21): 327-333 TANG Mingjie, YANG Juan, JIN Yizhou, et al. Experimental study on optimization of ion source structure of micro electron cyclotron resonance ion thruster[J]. Acta Physica Sinica, 2015, 64(21): 327-333 (in Chinese)
[20] 陈琳英, 宋仁旺. 离子推力器羽流特性及其污染分析[J]. 上海航天, 2005, 22(4): 36-40 CHEN Linying, SONG Renwang. Plume characteristics and pollution analysis of ion thrusters[J]. Aerospace Shanghai, 2005, 22(4): 36-40 (in Chinese)
[21] 张朝晖. ANSYS工程应用与范例入门与提高[M]. 北京:清华大学出版社, 2004 ZHANG Chaohui. Introduction and improvement of ANSYS engineering application and examples[M]. Beijing: Tsinghua University Press, 2004 (in Chinese)