论文:2023,Vol:41,Issue(5):895-904
引用本文:
李立, 武君胜, 梁益华, 田增冬. 基于大规模并行计算的结冰翼型失速流场特性数值模拟研究[J]. 西北工业大学学报
LI Li, WU Junsheng, LIANG Yihua, TIAN Zengdong. A wall-modelled large eddy simulation approach based on large scale parallel computing for post stall flow over an iced airfoil[J]. Journal of Northwestern Polytechnical University

基于大规模并行计算的结冰翼型失速流场特性数值模拟研究
李立1,2, 武君胜1, 梁益华2, 田增冬2
1. 西北工业大学 计算机学院, 陕西 西安 710072;
2. 中国航空工业集团公司西安航空计算技术研究所 预研部, 陕西 西安 710068
摘要:
结冰安全性评估是民用飞机适航的重要工作内容。翼面结冰将引起机翼前缘外形及边界层状态变化,并诱导大范围分离,进而导致飞行器升力面性能急剧降低,甚至带来严重的飞行安全问题。针对常规方法难以有效准确预测结冰翼型后失速流场空气动力学特性的问题,发展了一种结合大规模并行计算和壁面模化大涡模拟(WMLES)的有效数值计算方法,成功用于双角冰结冰翼型GL305/944的后失速流场特性的数值模拟研究,取得了满意效果。数值模拟研究中,计算状态选取马赫数0.12,雷诺数3.5×106,攻角6°,对应了该翼型在风洞试验中后失速附近的流动状态。作为对比,同时给出雷诺平均Navier-Stokes(RANS)方法及改进的时间延迟脱体涡模拟(IDDES)方法的计算结果,并与试验结果进行了综合比较。结果表明,WMLES是一种适于计算大范围分离流动的有效方法,针对结冰翼型后失速流场的数值预测,可大幅提高预测精度;针对文中的GL305/944结冰翼型,WMLES能相对准确地预测总体气动力、压力平顶长度和压力恢复,以及角状冰引起的剪切层失稳,且预测的升力系数相对误差仅为0.47%,远小于RANS方法的-26.7%。
关键词:    结冰翼型    失速    壁面模化大涡模拟    并行计算    飞行安全   
A wall-modelled large eddy simulation approach based on large scale parallel computing for post stall flow over an iced airfoil
LI Li1,2, WU Junsheng1, LIANG Yihua2, TIAN Zengdong2
1. School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China;
2. Forecast Research Division, AVIC Xi'an Aeronautics Computing Technique Research Institute, Xi'an 710068, China
Abstract:
Safety evaluation for ice accretion is one of the most important jobs for the airworthiness certification of commercial aircraft. Ice accretion would induce strong performance degradation of lifting surfaces by modifying the geometry of the leading edge and the state of boundary layers, and inducing premature flow separation. In this paper, a wall-modelled large eddy simulation (WMLES) approach combined with high performance computing is presented and evaluated for numerical simulation of post stall flow at Mach number 0.12 and Reynolds number 3.5 million over an iced airfoil with angle of attack 6 degrees for business jet, which is known as the GL305/944 airfoil with horn ice. Both RANS and an improved DDES (IDDES) based on SST model are also completed to validate the results. The results are compared with the experimental data in details that includes total forces, velocity profile, averaged velocity field, RMS of pulsating velocity, et al. It is concluded that the WMLES approach presented here can greatly improve the numerical accuracy for post stall flow with large separation; Basically, WMLES can relatively accurately predict the total forces, the pressure rooftop length and the pressure recovery, and the shear layer instability induced by the horn ice.The relative error of lift coefficient for WMLES is only 0.47%, which is far less than RANS with -26.7%.
Key words:    iced airfoil    post stall flow    wall-modeled large eddy simulation(WMLES)    high performance computing    flight safety   
收稿日期: 2022-11-28     修回日期:
DOI: 10.1051/jnwpu/20234150895
基金项目: 陕西省重点研发计划(2022ZDLGY02-07)资助
通讯作者: 武君胜(1962—),西北工业大学教授,主要从事应用软件、计算方法、科学计算可视化及复杂领域软件工程研究。e-mail:wujunsheng@nwpu.edu.cn     Email:wujunsheng@nwpu.edu.cn
作者简介: 李立(1977—),西北工业大学博士研究生,主要从事计算流体力学仿真及并行计算技术研究。
相关功能
PDF(231KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李立  在本刊中的所有文章
武君胜  在本刊中的所有文章
梁益华  在本刊中的所有文章
田增冬  在本刊中的所有文章

参考文献:
[1] Federal Aviation Administration. 14 CFR part 25, airworthiness standards for transport category airplanes, appendix C, part I: atmospheric icing conditions[S]. CFR 14-25-2014
[2] BROEREN A P, ADDY H E, BRAGG M B, et al. Aerodynamic simulation of ice accretion on airfoils[R]. NASA/TP-2011-216929, 2011
[3] 中国民用航空局. 中国民用航空规章第25部:运输类飞机适航标准[S]. CCAR-25-R4
[4] THOMPSON D, MOGILI P. Detached-eddy simulations of separated flow around wings with ice accretions: year one report[R]. NASA/CR-2004-213379
[5] MOGILI P, THOMPSON D, CHOO Y S, et al. RANS and DES computation for a wing with ice accretion[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005, Reno, Nevada
[6] 魏扬, 徐浩军, 薛源, 等. 机翼前缘结冰对大飞机操稳特性的影响[J]. 北京航空航天大学学报, 2019, 45(6): 1088-1095 WEI Yang, XU Haojun, XUE Yuan, et al, Influence of ice accretion on leading edge of wings on stability and control-ability of large aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1088-1095 (in Chinese)
[7] COSTES M, MOENS F. Advanced numerical prediction of iced airfoil aerodynamics[J]. Aerospace Science and Technology, 2019, 91: 186-207
[8] ALAM M F, THOMPSON D S, WALTERS D K. Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation models for flow around an iced wing[J]. Journal of Aircraft, 2015, 52: 244-256
[9] XIAO M C, ZHANG Y F, ZHOU F. Numerical investigation of the unsteady flow past an iced multi-element airfoil[J]. AIAA Journal, 2020, 58: 3848-3862
[10] XIAO M C, ZHANG Y F. Improved prediction of flow around airfoil accreted with horn or ridge ice[J]. AIAA Journal, 2021, 59: 2318-2327
[11] STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 1-28
[12] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1): 522759 CHEN Yingchun, ZHANG Meihong, ZHANG Miao, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522759 (in Chinese)
[13] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences[R]. NASA/CR-2014-218178, 2014
[14] SPLART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit, 1992
[15] SHUR M L, SPALART P R, KH M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29: 406-417
[16] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5): 562-588 YAN Chao, YU Jian, XU Jinglei. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5): 562-588 (in Chinese)
[17] 李立, 麻蓉, 梁益华. 一类全速域低耗散AUSM+格式的构造及性能分析[C]//第16届全国计算流体力学会议, 厦门, 2014 LI Li, MA Rong, LIANG Yihua. Performance analysis of a low dissipation AUSM+ scheme for all speed[C]//16th National Workshop of Computational Fluid Dynamics, Xiamen, 2014 (in Chinese)
[18] GRITSKEVICH M S, GARBARUK A V, SCHUTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model, flow[J]. Turbulence and Combustion, 2012, 88: 431-449
[19] WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. Arizona: DCW Industries, Incoporated, 2006
[20] 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11): 2368-2382 ZHAO Zhong, ZHANG Laiping, HE Lei, et al. PHengLEI: a large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368-2382 (in Chinese)
[21] KARYPIS G, KUMAR V. Parallel multilevel k-way partitioning scheme for irregular graphs[J]. SIAM Review, 1999, 41(2): 278-300
[22] BROEREN A P, BRAGG M B, ADDY H E. Flowfield measurements about an airfoil with leading-edge ice shapes[J]. Journal of Aircraft, 2006, 43: 1226-1234
[23] SPALART P R. Young-person's guide to detached-eddy simulation grids[R]. NASA/CR-2001-21103, 2001