论文:2023,Vol:41,Issue(5):887-894
引用本文:
蒋雨瑾, 杨奇, 杨懋, 李波, 闫中江. 基于神经网络和遗传算法的高密集WLAN公平性保障算法[J]. 西北工业大学学报
JIANG Yujin, YANG Qi, YANG Mao, LI Bo, YAN Zhongjiang. Fairness guarantee algorithm of high-density WLAN based on neural network and genetic algorithm[J]. Journal of Northwestern Polytechnical University

基于神经网络和遗传算法的高密集WLAN公平性保障算法
蒋雨瑾, 杨奇, 杨懋, 李波, 闫中江
西北工业大学 电子信息学院, 陕西 西安 710072
摘要:
为了满足用户在各类场景下对无线业务日益增长的要求,高密集部署的无线局域网(wireless local area network,WLAN)是未来发展的趋势。但由于频率资源有限,相同信道必然存在多个WLAN无线接入点(access point,AP),然而处于同一信道的AP会互相干扰,造成网络中小区间吞吐量的公平性下降,无法为用户提供良好的服务质量。为了提高网络公平性,改善用户体验,需要制定合理的网络参数调优方法,给出了一种基于神经网络和遗传算法对WLAN参数优化的方法。采用神经网络构建网络参数与网络吞吐量公平性之间的映射,将训练完成的模型作为遗传算法的适应度评估函数,通过遗传算法求解优化参数组合配置来改善WLAN吞吐量公平性问题。仿真结果表明所提出算法能够使得高密集WLAN吞吐量公平性得到提升。
关键词:    无线局域网    公平性    神经网络    遗传算法   
Fairness guarantee algorithm of high-density WLAN based on neural network and genetic algorithm
JIANG Yujin, YANG Qi, YANG Mao, LI Bo, YAN Zhongjiang
School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to meet the growing requirements of users for wireless services in various scenarios, highly densely deployed wireless local area network(WLAN) will be developed. However, due to the limited frequency resources, there must be a large number of wireless access points(APs) in the same channel. But APs which are located in the same channel will interfere with each other, resulting in a decline in the fairness of throughput in the network. And it can not provide users with good quality of service. In order to improve the fairness of throughput and experience of users, it is necessary to formulate the reasonable network parameter adjusting methods. A method based on neural network and genetic algorithm is proposed. The neural network is used to build the relationship between the parameters of WLAN and the fairness of throughput. The trained model is used as the fitness evaluation function of the genetic algorithm. And the genetic algorithm is used to solve the optimization parameter combination configuration to improve the fairness of throughput in WLAN. Simulation results show that the present algorithm can improve the fairness of throughput in the whole network.
Key words:    wireless local area network(WLAN)    fairness    neural network    genetic algorithm   
收稿日期: 2022-11-17     修回日期:
DOI: 10.1051/jnwpu/20234150887
基金项目: 国家自然科学基金(61871322,61771392,61771390)资助
通讯作者: 杨懋(1984—),西北工业大学副教授,主要从事无线局域网多址接入技术研究。e-mail:yangmao@nwpu.edu.cn     Email:yangmao@nwpu.edu.cn
作者简介: 蒋雨瑾(1999—),西北工业大学硕士研究生,主要从事无线局域网多址接入技术研究。
相关功能
PDF(2125KB) Free
打印本文
把本文推荐给朋友
作者相关文章
蒋雨瑾  在本刊中的所有文章
杨奇  在本刊中的所有文章
杨懋  在本刊中的所有文章
李波  在本刊中的所有文章
闫中江  在本刊中的所有文章

参考文献:
[1] AFAQUI M S, GARCIA-VILLEGAS E, LOPEZ-AGUILERA E, et al. Dynamic sensitivity control of access pointsfor IEEE 802.11ax[C]//2016 IEEE International Conference on Communications, 2016: 1-7
[2] IWAI K, OHNUMA T, SHIGENO H, et al. Improving of fairness by dynamic sensitivity control and transmission power control with access point cooperation in dense WLAN[C]//2019 16th IEEE Annual Consumer Communications & Networking Conference, 2019: 1-4
[3] WONG S H, YANG H, LU S, et al. Robust rate adaptation for 802.11 wireless networks[C]//Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, 2006: 146-157
[4] LING X, YEUNG K L. Joint access point placement and channel assignment for 802.11 wireless LANS[J]. IEEE Trans on Wireless Communications, 2006, 5(10): 2705-2711
[5] KHOUKHI L, BADIS H, MERGHEM-BOULAHIA L, et al. Admission control in wireless Ad Hoc networks: a survey[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 2013(1): 1-13
[6] MHATRE V P, PAPAGIANNAKI K, BACCELLI F. Interference mitigation through power control in high density 802.11 WLANs[C]//IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications, 2007: 535-543
[7] WILHELMI F, CANO C, NEU G, et al. Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[J]. Ad Hoc Networks, 2019, 88: 129-141
[8] MENG F, CHEN P, WU L, et al. Power allocation in multi-user cellular networks: deep reinforcementlearning approaches[J]. IEEE Trans on Wireless Communications, 2020, 19(10): 6255-6267
[9] WILHELMI F, MUOZ S B, CANO C, et al. Spatial reuse in IEEE 802.11ax WLANs[J]. Computer Communications, 2021, 170: 65-83
[10] LIN W, BO L, MAO Y, et al. Integrated link-system level simulation platform for the next generation WLAN-IEEE 802.11ax[C]//Global Communications Conference, 2017
[11] JAIN R, CHIU D M W, HAWE W. A quantitative measure of fairness and discrimination for resource allocation in shared computer system[J/OL](1998-09-24)[2022-11-17]. https://arxiv.org/abs/cs/9809099
[12] ZHU J, SONG Y, JIANG D, et al. A new deep-Q-learning-based transmission scheduling mechanism for the cognitive internet of things[J]. IEEE Internet of Things Journal, 2018, 5(4): 2375-2385
[13] SUN H, CHEN X, SHI Q, et al. Learning to optimize: training deep neural networks for interference management[J]. IEEE Trans on Signal Processing, 2018, 66(20): 5438-5453
[14] BENNIS M, NIYATO D. A Q-learning based approach to interference avoidance in self-organized femtocell networks[C]//2010 IEEE Globecom Workshops, 2010: 706-710
[15] MURUGAN P, DURAIRAJ S. Regularization and optimization strategies in deep convolutional neural network[J/OL]. (2017-12-13)[2022-11-17]. https://arxiv.org/abs/1712.04711
[16] WILHELMI F, CANO C, NEU G, et al. Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[J]. Ad Hoc Networks, 2019, 88: 129-141
[17] CAO X, MA R, LIU L, et al. A machine learning-based algorithm for joint scheduling and power control in wireless networks[J]. IEEE Internet of Things Journal, 2018, 5(6): 4308-4318
[18] NASIR Y S, GUO D. Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2239-2250
[19] OKAMOTO H, NISHIO T, MORIKURA M, et al. Machine-learning-based throughput estimation using images for mmwave communications[C]//2017 IEEE 85th Vehicular Technology Conference, 2017
相关文献:
1.陈季凌, 唐进元, 杨铎.齿面粗糙度参数与接触应力的敏感性分析研究[J]. 西北工业大学学报, 2022,40(4): 883-891
2.李波, 杨志鹏, 贾卓然, 马浩.一种无监督学习型神经网络的无人机全区域侦察路径规划[J]. 西北工业大学学报, 2021,39(1): 77-84
3.陈侠, 刘子龙, 梁红利.基于GA-SLFRWNN的空中目标威胁评估[J]. 西北工业大学学报, 2019,37(2): 424-432
4.陈绍炜, 潘新, 刘涛.基于遗传算法SVM的电子元件寿命预测[J]. 西北工业大学学报, 2014,32(4): 637-641
5.张烈, 冯燕.一种优化的神经网络数字预失真方法[J]. 西北工业大学学报, 2014,32(6): 967-973
6.郭阳明, 冉从宝, 姬昕禹, 马捷中.基于组合优化BP神经网络的模拟电路故障诊断[J]. 西北工业大学学报, 2013,31(1): 44-48
7.李伟, 何鹏举, 杨恒, 陈明.基于粗糙集和改进遗传算法优化BP神经网络的算法研究[J]. 西北工业大学学报, 2012,30(4): 601-606