论文:2023,Vol:41,Issue(5):860-870
引用本文:
张玉峰, 吴紫辉, 闫琪, 黄楠, 杜光辉, 贺虎成, 周勇. 永磁同步电机无参数三矢量模型预测电流控制[J]. 西北工业大学学报
ZHANG Yufeng, WU Zihui, YAN Qi, HUANG Nan, DU Guanghui, HE Hucheng, ZHOU Yong. Nonparametric three-vector model predictive current control for permanent magnet synchronous motor[J]. Journal of Northwestern Polytechnical University

永磁同步电机无参数三矢量模型预测电流控制
张玉峰1, 吴紫辉1, 闫琪1, 黄楠1, 杜光辉1, 贺虎成1, 周勇2
1. 西安科技大学 电气与控制工程学院, 陕西 西安 710054;
2. 西北工业大学 航空学院, 陕西 西安 710072
摘要:
永磁同步电机多矢量模型预测控制能够有效改善传统单矢量模型预测控制存在的电流脉动大、控制精度有限等不足,但其控制性能更易受电机参数摄动的影响。为提升多矢量预测控制算法在电机参数摄动下的鲁棒性,提出一种永磁同步电机无参数三矢量模型预测电流控制算法。通过构建基于永磁同步电机输入输出信号的超局部预测电流模型,避免了电流预测受电机本体参数的影响,同时设计了扰动观测器对超局部模型中未建模与扰动部分进行估计。此外,引入基于电流误差的矢量占空比直接计算法,抑制电机参数摄动对占空比计算环节的不确定性影响,进一步提高了系统鲁棒性。与传统有参数三矢量模型预测电流控制进行仿真和实验对比,结果显示所提策略能够有效抑制电机参数变化所带来的系统扰动,保证了电机运行时的稳态性能。
关键词:    永磁同步电机    无参数    超局部模型    扰动观测    三矢量   
Nonparametric three-vector model predictive current control for permanent magnet synchronous motor
ZHANG Yufeng1, WU Zihui1, YAN Qi1, HUANG Nan1, DU Guanghui1, HE Hucheng1, ZHOU Yong2
1. School of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an 710054, China;
2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Multi-vector model predictive control of permanent magnet synchronous motor can effectively overcome the shortcomings of conventional single-vector model predictive control such as large motor current ripples and limited control accuracy, but its control performance is more susceptible to the influence of motor parameter perturbation. To improve the robustness of the multi-vector predictive control algorithm under the motor parameter perturbation, a novel nonparametric three-vector model predictive current control method for permanent magnet synchronous motors is proposed in this paper. Through constructing an ultra-local predictive current model based on the input and output signals of the permanent magnet synchronous motor, the influence of motor parameter perturbation on current prediction is avoided, and a disturbance observer is designed to estimate the non-modeled and perturbed parts of the ultra-local model. In addition, the direct calculation method of vector duty cycles based on current error is introduced to suppress the influence of motor parameter uncertainty on the duty cycle calculation link, which further improves the system robustness. Finally, simulations and experiments of the proposed method are demonstrated to compare with the conventional parametric three-vector model predictive current control, and the results show that the proposed control strategy can effectively suppress the disturbances caused by the motor parameters and ensure the steady-state performance during motor operation.
Key words:    PMSM    nonparametric    ultra-local model    disturbance observer    three vector   
收稿日期: 2022-10-08     修回日期:
DOI: 10.1051/jnwpu/20234150860
基金项目: 国家自然科学基金(52177056)资助
通讯作者:     Email:
作者简介: 张玉峰(1977—),西安科技大学副教授,主要从事永磁同步电机设计及控制研究。e-mail:xkdzhangyufeng@xust.edu.cn。
相关功能
PDF(4734KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张玉峰  在本刊中的所有文章
吴紫辉  在本刊中的所有文章
闫琪  在本刊中的所有文章
黄楠  在本刊中的所有文章
杜光辉  在本刊中的所有文章
贺虎成  在本刊中的所有文章
周勇  在本刊中的所有文章

参考文献:
[1] 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160 BAO Xiaohua, LIU Jiwei, SUN Yue, et al. Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160 (in Chinese)
[2] 殷凯轩, 高琳, 付文华, 等. 永磁同步电机的改进模型预测自抗扰前馈控制[J]. 西安交通大学学报, 2021, 55(4): 29-38 YIN Kaixuan, GAO Lin, FU Wenhua, et al. An improved prediction control model for PMSM with active dsiturbance rejection and feed-forward control strategy[J]. Journal of Xi'an Jiaotong University, 2021, 55(4): 29-38 (in Chinese)
[3] ZHANG X, ZHANG L, ZHANG Y. Model predictive current control for PMSM drives with parameter robustness improvement[J]. IEEE Trans on Power Electronics, 2018, 34(2): 1645-1657
[4] 姚绪梁, 黄剩齐, 王景芳, 等. 两相静止坐标系下的永磁同步电动机模型预测功率控制[J]. 电工技术学报, 2021, 36(1): 60-67 YAO Xuliang, HUANG Shengqi, WANG Jingfang, et al. Model predictive power control of permanent magnet synchronous motor in two-phase static coordinate system[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 60-67 (in Chinese)
[5] ZHANG Y, YANG H. Model predictive torque control of induction motor drives with optimal duty cycle control[J]. IEEE Trans on Power Electronics, 2014, 29(12): 6593-6603
[6] 刘佳敏, 葛召炎, 吴轩, 等. 基于占空比调制的永磁同步电机预测电流控制[J]. 中国电机工程学报, 2020, 40(10): 3319-3328 LIU Jiamin, GE Zhaoyan, WU Xuan, et al. Predictive current control of permanent magnet synchronous motor based on duty-cycle modulation[J]. Proceedings of the CSEE, 2020, 40(10): 3319-3328 (in Chinese)
[7] ZHANG Y, PENG Y, YANG H. Performance improvement of two-vectors-based model predictive control of PWM rectifier[J]. IEEE Trans on Power Electronics, 2015, 31(8): 6016-6030
[8] 郭磊磊, 李国昊, 金楠, 等. 两电平电压源逆变器双矢量调制模型预测控制:理论分析、实验验证和推广[J]. 电工技术学报, 2021, 36(1): 39-49 GUO Leilei, LI Guohao, JIN Nan, et al. Two-vector-based modulated model predictive control method for 2-level voltage source inverters: theoretical analysis, experimental verification and extension[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 39-49 (in Chinese)
[9] 徐艳平, 王极兵, 周钦, 等. 永磁同步电动机双优化三矢量模型预测电流控制[J]. 中国电机工程学报, 2018, 38(6): 1857-1864 XU Yanping, WANG Jibing, ZHOU Qin, et al. Double optimization three-vector-based model predictive current control for permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2018, 38(6): 1857-1864 (in Chinese)
[10] 秦艳忠, 阎彦, 陈炜, 等. 永磁同步电机参数误差补偿-三矢量模型预测电流控制[J]. 电工技术学报, 2020, 35(2): 255-265 QIN Yanzhong, YAN Yan, CHEN Wei, et al. Three-vector model predictive current control strategy for permanent magnet synchronous motor drives withparameter error compensation[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 255-265 (in Chinese)
[11] 李键, 牛峰, 黄晓艳, 等. 永磁同步电机有限控集模型预测电流控制预测误差分析[J]. 电机与控制学报, 2019, 23(4): 1-7 LI Jian, NIU Feng, HUANG Xiaoyan, et al. Prediction error analysis of finite-control-set model predictive current control for PMSMs[J]. Electric Machines and Control, 2019, 23(4): 1-7 (in Chinese)
[12] LIN C K, LIU T H, FU L C, et al. Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique[J]. IEEE Trans on Industrial Electronics, 2013, 61(2): 667-681
[13] DA RÙ D, POLATO M, BOLOGNANI S. Model-free predictive current control for a SynRM drive based on an effective update of measured current responses[C]//2017 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics, 2017: 119-124
[14] MA C, LI H, YAO X, et al. An improved model-free predictive current control with advanced current gradient updating mechanism[J]. IEEE Trans on Industrial Electronics, 2020, 68(12): 11968-11979
[15] FLIESS M, JOIN C. Model-free control[J]. International Journal of Control, 2013, 86(12): 2228-2252
[16] SAFAEI A, MAHYUDDIN M N. Adaptive model-free control based on an ultra-local model with model-free parameter estimations for a generic SISO system[J]. IEEE Access, 2018, 6: 4266-4275
[17] ZHOU Y, LI H, YAO H. Model-free control of surface mounted PMSM drive system[C]//2016 IEEE International Conference on Industrial Technology, 2016: 175-180
[18] XU L, CHEN G, LI Q. Ultra-local model-free predictive current control based on nonlinear disturbance compensation for permanent magnet synchronous motor[J]. IEEE Access, 2020, 8: 127690-127699
[19] ZHOU Y, LI H, LIU R, et al. Continuous voltage vector model-free predictive current control of surface mounted permanent magnet synchronous motor[J]. IEEE Trans on Energy Conversion, 2018, 34(2): 899-908