论文:2023,Vol:41,Issue(5):831-841
引用本文:
李钊星, 王霞, 王敏文, 沈健, 许斌. 基于奇异摄动分解的弹性飞机乘坐品质控制[J]. 西北工业大学学报
LI Zhaoxing, WANG Xia, WANG Minwen, SHEN Jian, XU Bin. Singular perturbation decomposition-based ride quality control of elastic aircraft[J]. Journal of Northwestern Polytechnical University

基于奇异摄动分解的弹性飞机乘坐品质控制
李钊星1, 王霞1, 王敏文2, 沈健2, 许斌1
1. 西北工业大学 自动化学院, 陕西 西安 710072;
2. 航空工业西安飞行自动控制研究所, 陕西 西安 710065
摘要:
考虑弹性飞机在风干扰作用下乘客乘坐舒适性降低,提出一种基于奇异摄动分解的乘坐品质控制方法。针对弹性客机动力学模型,采用奇异摄动理论将模型解耦为刚性慢变子系统和弹性快变子系统。考虑刚性子系统的附加时变扰动和气动不确定影响,设计干扰观测器估计扰动项并采用神经网络处理模型不确定性,将复合估计信息作为前馈补偿并结合俯仰角速率和法向过载跟踪误差反馈给出自适应鲁棒控制策略。针对弹性子系统设计非奇异终端滑模控制,实现振动主动抑制。综合刚弹子系统控制器设计形成弹性客机乘坐品质控制律,实现附加法向过载和弹性模态的快速抑制收敛。基于李雅普诺夫稳定性分析证明了系统的一致终值有界。仿真结果表明,在离散突风和大气紊流作用下所提出的控制方法能够降低客机关键位置处的附加法向过载,有效提升弹性客机乘坐品质。
关键词:    弹性飞机    奇异摄动分解    干扰观测器    非奇异终端滑模    乘坐品质控制   
Singular perturbation decomposition-based ride quality control of elastic aircraft
LI Zhaoxing1, WANG Xia1, WANG Minwen2, SHEN Jian2, XU Bin1
1. School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;
2. AVIC Xi'an Flight Automatic Control Research Institute, Xi'an 710065, China
Abstract:
Considering the reduction of ride comfort under wind disturbance, the ride quality control method based on singular perturbation decomposition is proposed. For the dynamic model of elastic aircraft, the singular perturbation theory is used to decouple the model into the rigid-slow subsystem and the flexible-fast subsystem. Considering the additional time-varying disturbance and aerodynamic uncertainty of the rigid subsystem, the disturbance observer is designed to estimate disturbance effect and the neural network is used to deal with model uncertainty. The adaptive robust control is constructed using the composite estimation information as feedforward compensation and the tracking error of pitch rate and normal overload as feedback design. For the flexible subsystem, a nonsingular terminal sliding mode controller is designed to achieve active vibration suppression. The ride quality control law of elastic aircraft is obtained by combining the control inputs of the rigid and flexible subsystems, and the additional normal overload and elastic mode can be quickly restrained and converged. Based on Lyapunov stability analysis, the uniformly ultimate boundedness of the system is proved. The simulation results show that the proposed method can reduce the additional normal overload at the key positions of the aircraft under discrete gust and atmospheric turbulence, and the riding quality of elastic aircraft is effectively improved.
Key words:    elastic aircraft    singular perturbation decomposition    disturbance observer    nonsingular terminal sliding mode    ride quality control   
收稿日期: 2023-05-17     修回日期:
DOI: 10.1051/jnwpu/20234150831
基金项目: 国家自然科学基金(61933010)资助
通讯作者: 许斌(1982—),西北工业大学教授,主要从事智能控制、先进导航研究。e-mail:smileface.binxu@gmail.com     Email:smileface.binxu@gmail.com
作者简介: 李钊星(1997—),西北工业大学博士研究生,主要从事飞行器控制研究。
相关功能
PDF(3660KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李钊星  在本刊中的所有文章
王霞  在本刊中的所有文章
王敏文  在本刊中的所有文章
沈健  在本刊中的所有文章
许斌  在本刊中的所有文章

参考文献:
[1] SCHMOLLGRUBER P, BARTOLI N, BEDOUET J. et al. Improvement of the aircraft design process for air traffic management evaluations[C]//2018 AIAA Aerospace Sciences Meeting, Reston, 2018: 0283-0306
[2] 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022,43(10): 216-256 YANG Chao, QIU Qisheng, ZHOU Yitao, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 216-256 (in Chinese)
[3] STACHIW T, KHOULI F, LANGLOIS R G, et al. Landing gear mechanical network synthesis for improving comfort at landing considering aircraft flexibility[J]. Journal of Aircraft, 2021, 58(6): 1242-1253
[4] ASARO S, LÜER L, BAUKNECHT A. Experimental load modification on a dual-slot circulation control airfoil[J]. Experiments in Fluids, 2023, 64(1): 1-23
[5] ULLAH J, LUTZ T, KLUG L, et al. Approach for aerodynamic gust load alleviation by means of spanwise-segmented flaps[J]. Journal of Aircraft, 2023, 60(3): 835-856
[6] LI Y, QIN N. A review of flow control for gust load alleviation[J]. Applied Sciences, 2022, 12(20): 10537
[7] 吴志刚, 陈磊, 杨超, 等. 弹性飞机阵风响应建模与减缓方案设计[J].中国科学:技术科学,2011,41(3): 394-402 WU Zhigang, CHEN Lei, YANG Chao, et al. Gust response modeling and alleviation scheme design for an elastic aircraft[J]. Science China Technical Science, 2011, 41(3): 394-402 (in Chinese)
[8] 杨澜, 安朝, 谢长川, 等. 基于状态空间涡格法的阵风减缓分析[J]. 北京航空航天大学报, 2022,48(7):1200-1209 YANG Lan, AN Chao, XIE Changchuan, et al. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022,48(7): 1200-1209 (in Chinese)
[9] 骞恒浩, 石鹏飞, 王敏文, 等. 基于自抗扰的翼身融合客机控制器设计[J].兵工自动化,2022, 41(10): 26-31 QIAN Henghao, SHI Pengfei, WANG Minwen, et al. Controller design of blended wing body aircraft based on auto disturbance rejection[J]. Ordnance Industry Automation, 2022,41(10): 26-31 (in Chinese)
[10] KHALIL A, FEZANS N. Gust load alleviation for flexible aircraft using discrete-time preview control[J]. The Aeronautical Journal, 2021, 125(1284): 341-364
[11] ZHEN X G, JUN F. Robust LPV modeling and control of aircraft flying through wind disturbance[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1588-1602
[12] DE SOUZA A R, VUILLEMIN P, POUSSOT-VASSAL C, et al. Gust load alleviation using reduced-order aeroelastic models and observer-based robust control[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(5): 949-957
[13] ZHOU Y, WU Z, YANG C. Gust alleviation and wind tunnel test by using combined feedforward control and feedback control[J]. Aerospace, 2022, 9(4): 225
[14] 王培涵, 吴志刚, 杨超, 等. 一种适用于弹性飞机飞行仿真的补丁方法[J]. 航空学报, 2023,44(6): 80-96 WANG Peihan, WU Zhigang, YANG Chao, et al. Flight simulation of flexible aircrafts with a method of patch module[J]. Acta Aeronautica et Astronautica Sinica, 2023,44(6): 80-96 (in Chinese)
[15] ISKANDAR M, VAN OMMEREN C, WU X, et al. Model predictive control applied to different time-scale dynamics of flexible joint robots[J]. IEEE Robotics and Automation Letters, 2022, 8(2): 672-679
[16] VERSIANI T S S, SILVESTRE F J, NETO A B G, et al. Gust load alleviation in a flexible smart idealized wing[J]. Aerospace Science and Technology, 2019, 86: 762-774
[17] 陈洋, 王正杰, 郭士钧. 多控制面柔性翼飞行器阵风减缓研究[J]. 北京理工大学学报, 2017, 37(12): 1229-1234 CHEN Yang, WANG Zhengjie, GUO Shijun. Gust alleviation of flexible wing aircraft with multiple control surfaces[J]. Transactions of Beijing Institute of Technology, 2017, 37(12): 1229-1234 (in Chinese)
[18] 刘祥, 孙秦. 一种弹性机翼的颤振主动抑制与阵风减缓方法[J].西北工业大学学报, 2015, 33(5): 804-810 LIU Xiang, SUN Qin. A robust active flutter suppression and gust alleviation method for flexible wing[J]. Journal of Northwestern Polytechnical University, 2015, 33(5): 804-810 (in Chinese)
[19] 许斌, 王霞. 基于时标分解的弹性高超声速飞行器智能控制[J]. 航空学报, 2020, 41(11): 31-40 XU Bin, WANG Xia. Time-scale decomposition based intelligent control of flexible hypersonic flight vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(11): 31-40 (in Chinese)
[20] 王立波, 荆志伟, 唐矗. 波阵风中的弹性飞机动力学建模与仿真[J/OL].航空学报(2023-02-26)[2023-05-17]. http://kns.cnki.net/kcms/detail/11.1929.V.20230206.1251.005.html
[21] 国防科学技术工业委员会. 有人驾驶飞机(固定翼)飞行品质[S]. GJB 185-86, 1986
[22] 孙权志. 某大型飞机在大气紊流作用下乘座品质响应计算[J].飞行力学, 1984(1): 61-82 SUN Quanzhi. Calculation of ride quality response of a large aircraft under atmospheric turbulence[J]. Flight Dynamics, 1984(1): 61-82 (in Chinese)
[23] 国防科学技术工业委员会. 有人驾驶飞机飞行控制系统通用规范[S]. GJB 2191-94, 1994
[24] 李玉忍, 张宏宇, 田梁波, 等. 无人机全电刹车系统级联快速终端滑模控制[J]. 西北工业大学学报,2023, 41(1): 11-17 LI Yuren, ZHANG Hongyu, TIAN Liangbo, et al. Cascaded fast terminal sliding mode control for UAV electric braking system[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 11-17 (in Chinese)