论文:2023,Vol:41,Issue(4):812-819
引用本文:
马俊豪, 汤婧, 张晓宇, 代尚沛, 徐松涛, 李首庆, 贾旭宏. 高高原环境下富氧对纸箱燃烧特性的影响[J]. 西北工业大学学报
MA Junhao, TANG Jing, ZHANG Xiaoyu, DAI Shangpei, XU Songtao, LI Shouqing, JIA Xuhong. Effect of oxygen-enriched on the combustion characteristics of cartons under high plateau[J]. Journal of Northwestern Polytechnical University

高高原环境下富氧对纸箱燃烧特性的影响
马俊豪1, 汤婧1, 张晓宇1, 代尚沛1, 徐松涛1, 李首庆2, 贾旭宏1
1. 中国民用航空飞行学院 民机火灾科学与安全工程四川省重点实验室, 四川 广汉 618307;
2. 中国民用航空飞行学院 民航飞行技术与飞行安全重点实验室, 四川 广汉 618307
摘要:
高高原机场生活区均设有人工增氧设施,固体材料在低压富氧环境下的火行为将发生明显变化。从传热传质角度推导了压力和氧浓度对固体燃烧速率的影响规律,在自主设计的低压富氧舱中开展纸箱着火实验,对燃烧过程中的质量燃烧速率、火焰形态和火焰温度等参数进行测量,以期为高高原机场室内消防安全提供一定的依据。结果表明,纸箱燃烧速率与压力和氧浓度之间的关系为 m″∝C1p2/3Y4/3O2,∞+C2p2Y4O2,∞,并通过实验结果拟合得到经验式。在60 kPa时,随着氧浓度从21%提升到33%时,热释放速率增大63.56%,总产热量增大8%,火焰最高温度提升19%,火焰形状由细高型变为宽低型,颜色由蓝黄色逐渐转为明亮色。通过富氧能明显减弱低压对纸箱燃烧的抑制作用,火灾危险性也随之增大。在高氧浓度下,压力与质量损失和产热量呈弱相关。
关键词:    低压富氧    瓦楞纸箱    燃烧特性    质量燃烧速率    火焰形态   
Effect of oxygen-enriched on the combustion characteristics of cartons under high plateau
MA Junhao1, TANG Jing1, ZHANG Xiaoyu1, DAI Shangpei1, XU Songtao1, LI Shouqing2, JIA Xuhong1
1. Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan 618307, China;
2. Key Laboratory of Civil Aviation Flight Technology and Flight Safety, Civil Aviation Flight University of China, Guanghan 618307, China
Abstract:
Artificial oxygenation facilities are installed in the high altitude airport living areas, and the fire behaviors of solid materials will change significantly under low-pressure with oxygen-enriched. The influence law of pressure and oxygen concentration on solid combustion rate was deduced from the perspective of heat and mass transfer. Carton fire experiments were carried out in the self-designed low-pressure oxygen-enriched chamber to measure parameters such as mass combustion rate, flame morphology and flame temperature during the combustion process, with a view to providing some basis for indoor fire safety in high plateau airports. The results showed that the relationship between the rate of combustion of carton and the pressure and oxygen concentration is m″∝C1p2/3Y4/3O2,∞+C2p2Y4O2,∞, and the empirical formula is obtained through experimental results. At 60 kPa, as the oxygen concentration increased from 21% to 33%, the heat release rate grew by 63.56%, the total heat production increased by 8%, and the maximum flame temperature increased by 19%. Furthermore, flame shape had a thin high type into a wide low type, the color had a blue-yellow gradually turned into a bright color. The inhibition of carton combustion by low pressure can be significantly weakened by oxygen enrichment and the fire hazard increases. In addition, pressure was weakly correlated with mass loss and heat production at high oxygen concentration.
Key words:    low pressure and oxygen-enriched    corrugated carton    combustion characteristics    mass burning rate    flame form   
收稿日期: 2022-09-22     修回日期:
DOI: 10.1051/jnwpu/20234140812
基金项目: 民航局安全能力建设项目(MHAQ2023030)、民航飞行技术与飞行安全重点实验室开放基金(FZ2020KF10)、中国民用航空飞行学院重点项目(ZJ2021-01)与中国民用航空飞行学院研究生科研创新计划(XSY2022-01)资助
通讯作者: 贾旭宏(1985—),中国民用航空飞行学院教授,主要从事民用飞机非金属材料燃烧特性与灭火剂合成研究。e-mail:jiaxuhong02@163.com     Email:jiaxuhong02@163.com
作者简介: 马俊豪(1996—),中国民用航空飞行学院硕士研究生,主要从事低压环境固体材料火行为研究。
相关功能
PDF(2579KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马俊豪  在本刊中的所有文章
汤婧  在本刊中的所有文章
张晓宇  在本刊中的所有文章
代尚沛  在本刊中的所有文章
徐松涛  在本刊中的所有文章
李首庆  在本刊中的所有文章
贾旭宏  在本刊中的所有文章

参考文献:
[1] DUAN G, SONG C, LIU Y, et al. Can hypobaric hypoxia affect human thermal comfort? An experimental study in tibet, China[J]. Journal of Central South University, 2022, 29(7): 2388-2402
[2] 杨雄, 刘应书, 沈民, 等. 高原低气压环境室内富氧的安全氧气体积分数上限[J]. 北京科技大学学报, 2009, 31(11): 1467-1471 YANG Xiong, LIU Yingshu, SHEN Min, et al. Maximum safe concentration of oxygen-enriched atmosphere in high altitude[J]. Journal of University of Science and Technology Beijing, 2009, 31(11): 1467-1471 (in Chinese)
[3] 刘应书, 杨雄, 沈民, 等. 低气压富氧环境对薄壁材料火焰传播速度的影响[J]. 燃烧科学与技术, 2010, 16(3): 199-203 LIU Yingshu, YANG Xiong, SHEN Min, et al. Effect of low barometric pressure and oxygen-enriched atmosphere on flame speeding velocity over thin materials[J]. Journal of Combustion Science and Technology, 2010, 16(3): 199-203 (in Chinese)
[4] WEST J B. Commuting to high altitude: value of oxygen enrichment of room air[J]. High Altitude Medicine & Biology, 2002, 3(2): 223-235
[5] WEST J B. Safe upper limits for oxygen enrichment of room air at high altitude[J]. High Altitude Medicine & Biology, 2001, 2(1): 47-51
[6] CHEN J, ZHANG X, ZHAO Y, et al. Oxygen concentration effects on the burning behavior of small scale pool fires[J]. Fuel, 2019, 247: 378-385
[7] LASTRINA F A, MAGEE R S, MCAlEVY III R F. Flame spread over fuel beds: solid-phase energy considerations[J]. Symposium on Combustion, 1971, 13(1): 935-948
[8] DE RIS J L. Pressure modeling of fires[J]. Symposium on Combustion, 1973, 14(1): 1033-1044
[9] WIESER D, JAUCH P, WILLI U. The influence of high altitude on fire detector test fires[J]. Fire Safety Journal, 1997, 29(2/3): 195-204
[10] 王伟刚, 孔文俊, 张培元. 低压环境下热薄固体燃料表面火焰传播实验研究[J]. 工程热物理学报, 2004(5): 887-890 WANG Weigang, KONG Wenjun, ZHANG Peiyuan. Experimental research on flame propagation on hot thin solid fuel surface in low pressure environment[J]. Journal of Engineering Thermophysics, 2004(5): 887-890 (in Chinese)
[11] WEI Y, HU X, RONG J, et al. Experimental study of large-scale fire behavior under low pressure at high altitude[J]. Journal of Fire Sciences, 2013, 31(6): 481-494
[12] 贾旭宏, 杨晓光, 黄松, 等. 低压条件下航空地毯燃烧特性研究[J]. 西北工业大学学报, 2020, 38(2): 319-324 JIA Xuhong, YANG Xiaoguang, HUANG Song, et al. Study on combustion properties of aviation carpet under low ambient pressure[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 319-324 (in Chinese)
[13] TIAN R, LIU Q, FENG R, et al. Experiment study of cardboard box fire behavior under dynamic pressure in an altitude chamber[C]//ASME International Mechanical Engineering Congress and Exposition, Houston, Texas, USA, 2015
[14] 毛莹, 张辉, 冯瑞. 不同压力环境下小纸箱燃烧特性实验研究[J]. 消防科学与技术, 2016, 35(6): 759-762 MAO Ying, ZHANG Hui, FENG Rui. Experimental research on combustion characteristics of small carton under different environment pressure[J]. Fire Science and Technology, 2016, 35(6): 759-762 (in Chinese)
[15] 冯瑞, 田润和, 陈科位, 等. 低气压环境对固体燃烧特性影响的实验研究[J]. 清华大学学报, 2019, 59(2): 111-121 FENG Rui, TIAN Runhe, CHEN Kewei, et al. Experimental study of the effect of low pressures on solid fuel combustion characteristics[J]. Journal of Tsinghua University, 2019, 59(2): 111-121 (in Chinese)
[16] WANG W, WANG L, YANG R, et al. Investigation of the effect of low pressure on fire hazard in cargo compartment[J]. Applied Thermal Engineering, 2019, 158: 113775
[17] MA Q J, SHAO J C, WAN M S, et al. Experimental study on the burning behavior of cardboard box fire under low air pressure[J]. Fire and Materials, 2020, 45(2): 273-282
[18] NIU Y, HE Y, HU X, et al. Experimental study of burning rates of cardboard box fires near sea level and at high altitude[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2565-2573
[19] DORR V A. Fire studies in oxygen-enriched atmospheres[J]. Fire Flammability, 1970, 1(4): 91
[20] NAKAMURA Y, AOKI A. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations-for fire safety in space habitats[J]. Advances in Space Research, 2007, 41(5): 777-782
[21] HIRSCH D, WILLIAMS J, BEESON H. Pressure effects on oxygen concentration flammability thresholds of polymeric materials for aerospace applications[J]. Journal of Testing & Evaluation, 2006, 36(1): 69-72
[22] HIRSCH D B, WILLIAMS J H, HARPER S A, et al. Oxygen concentration flammability thresholds of selected aerospace materials considered for the constellation program[C]//2nd IAASS Conference Space Safety in Global World, 2007
[23] OSORIO A F, FERNANDEZ-PELLO C, URBAN D L, et al. Limiting conditions for flame spread in fire resistant fabrics[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2691-2697
[24] National Fire Protection Association. Standard for hypobaric facilities[S]. NFPA99B-2021, 2021
[25] THOMSEN M, FERNANDEZ-PELLO C, OLSON S L, et al. Downward burning of PMMA cylinders: the effect of pressure and oxygen[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4837-4844
[26] 朱凤, 王双峰. 环境压力对热厚固体材料表面火焰传播的影响[J]. 燃烧科学与技术, 2019, 25(5): 401-407 ZHU Feng, WANG Shuangfeng. Effects of ambient pressure on flame spread over thermally-thick solid material[J]. Journal of Combustion Science and Technology, 2019, 25(5): 401-407. (in Chinese)
[27] QUINTIERE J G. Fundamentals of fire phenomena[M]. Chichester: John Wiley & Sons, 2006
[28] ZARZECKI M, QUINTIERE J G, LYON R E, et al. The effect of pressure and oxygen concentration on the combustion of PMMA[J]. Combustion and Flame, 2013, 160(8): 1519-1530
[29] DE RIS J L, WU P K, HESKESTAD G. Radiation fire modeling[J]. Proceedings of the Combustion Institute, 2000, 28(2): 2751-2759
[30] YAO W, HO X, RONG J, et al. Experimental study of large-scale fire behavior under low pressure at high altitude[J]. Journal of Fire Sciences, 2013, 31(6): 481-494
[31] LAUTENBERGER C W, DE RIS J L, DEMBSEY N A, et al. A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames[J]. Fire Safety Journal, 2005, 40(2): 141-176
[32] INCROPERA F P, DEWITT D P. Introduction to heat transfer[M]. New York: John Wiley & Sons, 1985
[33] FENG R, TIAN R, ZHANG H, et al. Experimental study on the burning behavior and combustion toxicity of corrugated cartons under varying sub-atmospheric pressure[J]. Journal of Hazardous Materials, 2019, 379: 12078
[34] MEALY C L, BENFER M, GOTTUK D T. Fire dynamics and forensic analysis of liquid fuel fires[R/OL]. (2012-05-01)[2022-08-16]. https://www.ojp.gov/pdffiles1/nij/grants/238704.pdf
[35] UCUNCU A, VEISILIND A. Energy recovery from mixed paper waste[J]. Waste Management and Research, 1993, 11: 507-513