论文:2023,Vol:41,Issue(4):688-696
引用本文:
范圣平, 李竞, 李林勇, 樊小鹏, 李华亮, 高南沙. 电磁阻尼器工作特性的理论模型与试验研究[J]. 西北工业大学学报
FAN Shengping, LI Jing, LI Linyong, FAN Xiaopeng, LI Hualiang, GAO Nansha. Theoretical model and experimental study on working characteristics of electromagnetic damper[J]. Journal of Northwestern Polytechnical University

电磁阻尼器工作特性的理论模型与试验研究
范圣平1, 李竞2, 李林勇1, 樊小鹏1, 李华亮1, 高南沙3
1. 广东电网有限责任公司 电力科学研究院, 广东 广州 510080;
2. 扬州大学 机械工程学院, 江苏 扬州 225127;
3. 西北工业大学 航海学院, 陕西 西安 710072
摘要:
为了明确电磁阻尼器在不同工况下的工作特性,提出了一种针对电磁阻尼器工作特性的分析模型。计算电磁阻尼器的惯性力和电磁阻尼力,测试电磁阻尼器的内部摩擦力;结合计算结果和测试数据,建立电磁阻尼器工作特性分析模型;运用该模型讨论多工况下电磁阻尼器的阻尼力输出特性与馈能特性,得到以回收能量和等效阻尼系数为坐标平面的电磁阻尼器工况特性曲面。结果表明:该模型计算结果与试验测试结果的误差小于10%;电磁阻尼器的阻尼力和输出电压均与激励频率和幅值呈正相关;激励幅值对馈能特性的影响较大,激励频率对阻尼特性的影响较大;负载电阻的减少将提升电磁阻尼器的馈能能力与减振能力。
关键词:    电磁阻尼器    阻尼特性    馈能特性    试验研究   
Theoretical model and experimental study on working characteristics of electromagnetic damper
FAN Shengping1, LI Jing2, LI Linyong1, FAN Xiaopeng1, LI Hualiang1, GAO Nansha3
1. Electric Power Research Institute, Guangdong Power Grid Co., Ltd, Guangzhou 510080, China;
2. School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China;
3. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
An analysis model for electromagnetic damper is proposed in order to obtain the working characteristics of electromagnetic damper under different working conditions. Firstly, the inertia force and the electromagnetic force of electromagnetic damper are calculated, and the friction force is tested. Secondly, by combining the theoretical results and the test data, the working characteristic analysis model for electromagnetic damper is established. Finally, the damping characteristics and energy harvesting characteristics of the electromagnetic damper under multiple working conditions are discussed by using the present model. The working condition characteristic surface of the electromagnetic damper is obtained by using the recovered energy and equivalent damping coefficient as the coordinate plane. The results show that the error between the calculated results and the test results is below 10%. The damping force and output voltage of the electromagnetic damper are positively correlated with excitation frequency and amplitude. The excitation amplitude and frequency influence the energy harvesting characteristic and damping property deeply, respectively. The increase in load resistance reduces the energy regenerative capacity and damping capacity of the electromagnetic damper.
Key words:    electromagnetic damper    damping characteristics    energy harvesting characteristics    test   
收稿日期: 2022-07-18     修回日期:
DOI: 10.1051/jnwpu/20234140688
基金项目: 南方电网科技项目(GDKJXM20200377)、国家自然科学基金青年项目(52005433)、江苏省高等学校自然科学基金面上项目(20KJB460001)与扬州市校合作专项基金(YZU202102)资助
通讯作者: 李竞(1986—),扬州大学讲师,主要从事机械结构动力学研究。e-mail:yzlijing@yzu.edu.cn     Email:yzlijing@yzu.edu.cn
作者简介: 范圣平(1978—),广东电网有限责任公司高级工程师,主要从事环境防护和治理研究。
相关功能
PDF(4827KB) Free
打印本文
把本文推荐给朋友
作者相关文章
范圣平  在本刊中的所有文章
李竞  在本刊中的所有文章
李林勇  在本刊中的所有文章
樊小鹏  在本刊中的所有文章
李华亮  在本刊中的所有文章
高南沙  在本刊中的所有文章

参考文献:
[1] 王茜茜, 张洵安, 任绍章, 等. 一种新型半主动摩擦阻尼器的耗能性能研究[J]. 西北工业大学学报, 2010, 28(3): 442-447 WANG Qianqian, ZHANG Xun'an, REN Shaozhang, et al. A new type of semi-active friction damper[J]. Journal of Northwestern Polytechnical University, 2010, 28(3): 442-447 (in Chinese)
[2] GUAN Guan, JING Xingjian, SHEN Hui, et al. Test and simulation the failure characteristics of twin tube shock absorber[J]. Mechanical Systems and Signal Processing, 2019, 122: 707-719
[3] 侯光泽, 刘景林, 付朝阳. 电磁阻尼器的气隙磁场及阻尼力矩的高精度分析[J]. 西北工业大学学报, 2012, 30(6): 946-951 HOU Guangze, LIU Jinglin, FU Zhaoyang. High precision analysis of magnetic field distribution and damping torque for electromagnetic damper[J]. Journal of Northwestern Polytechnical University, 2012, 30(6): 946-951 (in Chinese)
[4] 杨涛, 周生喜, 曹庆杰, 等. 非线性振动能量俘获技术的若干进展[J]. 力学学报, 2021, 53(11): 2894-2909 YANG Tao, ZHOU Shengxi, CAO Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese)
[5] 吴吉, 王增彬, 王流火, 等. 基于振动能量采集的无源温度传感技术研究[J]. 广东电力, 2018, 31(12): 120-126 WU Ji, WANG Zengbin, WANG Liuhuo, et al. Study on passive temperature sensing technology based on vibration energy harvesting[J]. Guangdong Electric Power, 2018, 31(12): 120-126 (in Chinese)
[6] 蒋志杰, 杨金明, 黄伟. 直驱式波浪发电系统的哈密顿建模和无源性控制[J]. 广东电力, 2021, 34(3): 23-32 JIANG Zhijie, YANG Jinming, HUANG Wei. Hamiltonian modeling and passivity-based control of direct-drive wave power generation system[J]. Guangdong Electric Power, 2021, 34(3): 23-32 (in Chinese)
[7] PAN Hongye, QI Lingfei, ZHANG Zutao, et al. Kinetic energy harvesting technologies for applications in land transportation: a comprehensive review[J]. Applied Energy, 2021, 286: 116518
[8] XIE Longhan, CAI Siqi, HUANG Guowei, et al. On energy harvesting from a vehicle damper[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(1): 108-117
[9] LUO Yifan, SUN Hongxin, WANG Xiuyong, et al. Parametric optimization of electromagnetic tuned inerter damper for structural vibration suppression[J]. Structural Control and Health Monitoring, 2021, 28: 1-21
[10] 王有林, 刘景林. 电磁阻尼器设计研究[J]. 西北工业大学学报, 2006, 24(3): 358-362 WANG Youlin, LIU Jinglin. Designing electromagnetic damper used in space rendezvous[J]. Journal of Northwestern Polytechnical University, 2006, 24(3): 358-362 (in Chinese)
[11] 李斌, 董万元, 王小兵. 一种气动/电磁联合作动的主动隔振器设计与仿真[J]. 西北工业大学学报, 2013, 31(6): 871-877 LI Bin, DONG Wanyuan, WANG Xiaobing. Design and simulation of an active vibration isolator based on pneumatic electromagnetic hybrid driving[J]. Journal of Northwestern Polytechnical University, 2013, 31(6): 871-877 (in Chinese)
[12] 王庆年, 刘松山, 王伟华, 等. 滚珠丝杠式馈能型减振器的结构设计及参数匹配[J]. 吉林大学学报, 2012, 42(5): 1100-1106 WANG Qingnian, LIU Songshan, WANG Weihua, et al. Structure design and parameter matching of ball-screw regenerative damper[J]. Journal of Jilin University, 2012, 42(5): 1100-1106 (in Chinese)
[13] LI Zhongjie, ZUO Lei, LUHRS George, et al. Electromagnetic energy-harvesting shock absorber: design, modeling, and road tests[J]. IEEE Trans on vehicular technology, 2013, 62(3): 1065-1074
[14] LI Zhongjie, ZUO Lei, KUANG Jian, et al. Energy-harvesting shock absorber with a mechanical motion rectifier[J]. Smart Materials and Structures, 2013, 22: 025008
[15] 陈龙, 汪佳佳, 汪若尘, 等. 基于能量优化的混合馈能悬架阻尼优化设计[J]. 农业机械学报, 2016, 47(8): 305-310 CHEN Long, WANG Jiajia, WANG Ruochen, et al. Damping optimization design of hybrid energy regenerative suspension system based on energy optimization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 305-310 (in Chinese)
[16] 郜浩楠, 徐俊, 蒲晓晖, 等. 面向新能源汽车的悬架振动能量回收在线控制方法[J]. 西安交通大学学报, 2020, 54(4): 19-26 GAO Haonan, XU Jun, PU Xiaohui, et al. An online control method for energy recovery of suspension vibration of new energy vehicles[J]. Journal of Xi'an Jiaotong University, 2020, 54(4): 19-26 (in Chinese)
[17] ZHANG Zutao, ZHANG Xingtian, CHEN Weiwu, et al. A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle[J]. Applied Energy, 2016, 178: 177-188
[18] GUO Sijing, XU Lin, LIU Yilun, et al. Modeling and experiments of a hydraulic electromagnetic energy-harvesting shock absorber[J]. Transactions on Mechatronics, 2017, 22(6): 2684-2694
[19] 彭虎, 张进秋, 张建, 等. 馈能式电磁作动器设计及特性试验研究[J]. 机械传动, 2018, 42(11): 127-131 PENG Hu, ZHANG Jinqiu, ZHANG Jian, et al. Research of the design and character test of energy-regenerative electromagnetic actuator[J]. Journal of Mechanical Transmission, 2018, 42(11): 127-131 (in Chinese)
[20] 刘松山, 王庆年, 王伟华, 等. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报, 2013, 43(3): 557-563 LIU Songshan, WANG Qingnian, WANG Weihua, et al. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension [J]. Journal of Jilin University, 2013, 43(3): 557-563 (in Chinese)
[21] CHEN Chienan, LI Xiaofan, ZUO Lei, et al. Circuit modelling of the mechanical-motion rectifier for electrical simulation of ocean wave power takeoff[J]. IEEE Trans on Industrial Electronics, 2021, 68(4): 3262-3272
[22] LI Xiaofan, MARTIN Dillon, LIANG Changwei, et al. Characterization and verification of a two-body wave energy converter with a novel power take-off[J]. Renewable Energy, 2021, 163: 910-920
[23] LIU Mingyi, MI Jia, TAI Weiche, et al. A novel configuration for high power-output and highly efficient vibration energy harvesting[J]. Applied Energy, 2021, 295: 116957