论文:2023,Vol:41,Issue(4):679-687
引用本文:
杜江山, 黄镕敏, 黄铁球. 基于火星车牵引性能的石块粒径划分研究[J]. 西北工业大学学报
DU Jiangshan, HUANG Rongmin, HUANG Tieqiu. Study on hard rock particle size division based on Mars rover traction performance[J]. Journal of Northwestern Polytechnical University

基于火星车牵引性能的石块粒径划分研究
杜江山, 黄镕敏, 黄铁球
北京交通大学 机械与电子控制工程学院, 北京 100044
摘要:
针对简化火星车刚轮与球形石块在混合地形上接触的动力学求解问题,提出了一种基于火星车牵引性能的石块粒径划分模型。石块-软土混合地形上,石块受载沉陷,其运动状态会影响火星车刚轮的牵引性能。依据石块对刚轮牵引性能的影响效果不同,将石块划分为3种类型。根据Bekker承压模型计算刚轮静沉陷,提出刚轮滑动沉陷计算公式和石块沉陷计算公式,根据石块和刚轮沉陷量确定石块类型。最后将滑转率为0.2,0.5,0.7时的3种石块分别代入单轮仿真平台和土槽实验平台进行仿真和实验。结果显示:混合地形上,3种滑转率下的固定石块的仿真和实验结果误差小于5.4%,可移动石块的仿真和实验结果中的挂钩牵引力误差超过126%,散布小石块仿真和实验结果误差小于2%,验证了石块粒径划分模型的有效性。
关键词:    石块-软土混合地形    石块粒径    牵引性能    刚轮    火星车   
Study on hard rock particle size division based on Mars rover traction performance
DU Jiangshan, HUANG Rongmin, HUANG Tieqiu
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Abstract:
To simplify the dynamic solution of the contact between the rigid wheel of Mars rover and the spherical hard stone on the mixed terrain, a model for hard stone particle size division based on the traction performance of Mars rover is proposed. On the mixed terrain of hard rock and soft soil, the movement of hard rock will affect the traction performance of the rigid wheels of Mars rover. According to the different effects of the hard stones on the traction performance of rigid wheels, stones are divided into three types. The static sinkage of rigid wheels is calculated according to the Bekker bearing model, and the calculation formula of sliding sinkage of rigid wheels and hard stone sinkage is proposed. The type of hard stones is determined by comparing the sinkage of hard stones and rigid wheels. Finally, three kinds of hard stones with slip ratios of 0.2, 0.5, and 0.7 were substituted into the single wheel simulation platform and the soil trough experiment platform for simulation and experiment. The results show that on mixed terrain, the error of simulation and experimental results of fixed hard stones under three slip rates is below 5.4%, the error of drawbar pull in simulation and experimental results of movable hard stones is above 126%, and the error of simulation and experimental results of scattered small hard stones is below 2%, which verifies the effectiveness of the hard stone particle size division model.
Key words:    hard rock-soft soil mixed terrain    hard stone particle size    traction performance    rigid wheel    Mars rover   
收稿日期: 2022-09-16     修回日期:
DOI: 10.1051/jnwpu/20234140679
通讯作者: 黄铁球(1971—),北京交通大学副教授,主要从事机械多体动力学研究。e-mail:tqhuang@bjtu.edu.cn     Email:tqhuang@bjtu.edu.cn
作者简介: 杜江山(1996—),北京交通大学硕士研究生,主要从事轮壤接触动力学研究。
相关功能
PDF(2561KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杜江山  在本刊中的所有文章
黄镕敏  在本刊中的所有文章
黄铁球  在本刊中的所有文章

参考文献:
[1] 欧阳自远, 肖福根. 火星及其环境[J]. 航天器环境工程, 2012, 29(6): 591-601 OUYANG Ziyuan, XIAO Fugen. The mars and its environment[J]. Spacecraft Environment Engineering, 2012, 29(6): 591-601 (in Chinese)
[2] ARVIDSON R E, ANDERSON R C, BARTLETT P, et al. Localization and physical properties experiments conducted by Spirit at Gusev Crater[J]. Science, 2004, 305(5685): 821-824
[3] GOLOMBEK M, RAPP D. Size-frequency distributions of rocks on Mars and Earth analog sites: implications for future landed missions[J]. Journal of Geophysical Research: Planets, 1997, 102(E2): 4117-4129
[4] KRUMBEIN W C. Measurement and geological significance of shape and roundness of sedimentary particles[J]. Journal of Sedimentary Research, 1941, 11(2): 64-72
[5] BARRETT P J. The shape of rock particles, a critical review[J]. Sedimentology, 1980, 27(3): 291-303
[6] DOBKINS J E, FOLK R L. Shape development on Tahiti-nui[J]. Journal of Sedimentary Research. 1970, 40(4): 1167-1203
[7] SNEED E D, FOLK R L. Pebbles in the lower colorado river, texas a study in particle morphogenesis[J]. The Journal of Geology, 1958, 66(2): 114-150
[8] PARKER T J, MOORE H J, CRISP J A, et al. Petrogenetic interpretations of rock textures at the Pathfinder landing site[C]//Lunar and Planetary Science Conference, 1998
[9] GREELEY R, IVERSEN D. Wind as a geological process on earth, mars, venus and titan[M]. London: Cambridge University Press, 1987
[10] 赵静, 魏世民, 唐玲, 等. 火星车行驶环境研究综述[J]. 载人航天, 2019, 25(2): 256-264 ZHAO Jing, WEI Shimin, TANG Ling, et al. Review on driving environment of mars rover[J]. Manned Spaceflight, 2019, 25(2): 256-264 (in Chinese)
[11] 翟广龙, 黄铁球. 星球车刚性车轮在混合地形上牵引性能研究[J]. 西北工业大学学报, 2020, 38(06): 1240-1248 ZHAI Guanglong, HUANG Tieqiu. Exploring tractive performance of planetary Rover's rigid wheel on mixed terrain[J]. Journal of Northwesten Polytechnical University, 2020, 38(6): 1240-1248 (in Chinese)
[12] SCHÄFER B, GIBBESCH A, KRENN R, et al. Planetary rover mobility simulation on soft and uneven terrain[J]. Vehicle System Dynamics, 2010, 48(1): 149-169
[13] 焦震. 基于地面力学的月球车动力学建模与仿真研究[D]. 哈尔滨:哈尔滨工业大学, 2009 JIAO Zhen. Dynamics modelling and simulation for lunar rover based on terramechanics[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese)
[14] FERVERS C W. Improved FEM simulation model for tire-soil interaction[J]. Journal of Terramechanics, 2004, 41(2/3): 87-100
[15] KNUTH M A, JOHNSON J B, HOPKINS M A, et al. Discrete element modeling of a Mars Exploration Rover wheel in granular material[J]. Journal of Terramechanics, 2012, 49(1): 27-36
[16] ZHOU F, ARVIDSON R E, BENNETT K, et al. Simulations of mars rover traverses[J]. Journal of Field Robotics, 2014, 31(1): 141-160
[17] BEKKER G M. Introduction to terrain-vehicle systems[M]. Michigan: The University of Michigan Press, 1969