论文:2023,Vol:41,Issue(4):644-653
引用本文:
郭晓旭, 徐兆斌, 徐可笛, 朱耀伟, 金仲和. 大规模星座组网通信的多址接入方式优化[J]. 西北工业大学学报
GUO Xiaoxu, XU Zhaobin, XU Kedi, ZHU Yaowei, JIN Zhonghe. Optimization of multiple access mode for large-scale constellation networking communication[J]. Journal of Northwestern Polytechnical University

大规模星座组网通信的多址接入方式优化
郭晓旭1, 徐兆斌1,2,3, 徐可笛1, 朱耀伟1, 金仲和1,2,3
1. 浙江大学 微小卫星研究中心, 浙江 杭州 310027;
2. 浣江实验室, 浙江 诸暨 311899;
3. 浙江省微纳卫星研究重点实验室, 浙江 杭州 310027
摘要:
在大规模卫星星座技术中,卫星内部网络的建立是重中之重,而随着星座的网络容量不断扩大、卫星节点的不断增多,以往的卫星多址接入技术已经不能满足超大规模星座的网络容量需求。针对大规模星座中卫星节点的海量连接对组网通信新方式的需求,以稀疏码分多址技术(sparse code multiple access, SCMA)为基础建立星间稀疏扩频通信系统,提出了利用枚举遍历算法进行码本设计、迭代矫正算法完成接收端的信道估计等核心技术,同时对大规模星座的信道特点进行分析并在MATLAB中建立了对应星间信道模型,在该信道模型基础上对系统进行性能仿真。仿真结果表明在同等能噪比条件下,所建稀疏扩频星间通信系统与正交频分多址技术(orthogonal frequency division multiple access,OFDMA)、码分多址技术(code division multiple access,CDMA)相比取得了更优的误码率特性,并且,该系统相对于CDMA技术其门限能噪比有2 dB以上的性能优化,相对于OFDMA技术则有着50%的时频资源利用率提升。
关键词:    星座组网    信道模型    星间链路    网络容量    稀疏扩频   
Optimization of multiple access mode for large-scale constellation networking communication
GUO Xiaoxu1, XU Zhaobin1,2,3, XU Kedi1, ZHU Yaowei1, JIN Zhonghe1,2,3
1. Micro-satellite Research Center, Zhejiang University, Hangzhou 310027, China;
2. Huanjiang Laboratory, Zhuji 311899, China;
3. Key Laboratory of Micro-satellite Research of Zhejiang Province, Hangzhou 310027, China
Abstract:
In the large-scale satellite constellation technology, the establishment of satellite internal network is the top priority. As the network capacity of the constellation continues to expand and the number of satellite nodes continues to increase, the previous multiple access technology can no longer meet the network capacity requirements of large-scale constellations. In order to meet the requirements of massive connections of satellite nodes in large-scale constellation for new networking communication methods, this paper establishes a sparse spread spectrum inter-satellite communication system with sparse code multiple access (SCMA) as the core. At the same time, the channel characteristics of large-scale constellation are analyzed and the corresponding inter satellite channel model is established in MATLAB. Based on this channel model, the performance of the system is simulated. The simulation results show that under the same signal energy to noise ratio, the sparse spread spectrum inter-satellite communication system established in this paper has better BER characteristics compared with orthogonal frequency division multiple access (OFDMA) and code division multiple access (CDMA). In addition, the threshold signal energy to noise ratio of the system is more than 2 dB better than that of CDMA technology, and the utilization rate of time-frequency resources is 50% higher than that of OFDMA technology.
Key words:    satellite constellation networking    channel model    inter-satellite link    network capacity    sparse code division multiple access(SCMA)   
收稿日期: 2022-09-25     修回日期:
DOI: 10.1051/jnwpu/20234140644
基金项目: 国家自然科学基金面上项目(62073289)与国家自然科学基金(U21A20443)资助
通讯作者: 徐兆斌(1984—),浙江大学副教授,主要从事微纳卫星总体设计、软件无线电、卫星通信、星群通信及组网、高精度星间测量及导航研究。e-mail:zjuxzb@zju.edu.cn     Email:zjuxzb@zju.edu.cn
作者简介: 郭晓旭(1997—),浙江大学博士研究生,主要从事卫星编队及组网、高精度测量与导航、星间信号处理研究。
相关功能
PDF(2376KB) Free
打印本文
把本文推荐给朋友
作者相关文章
郭晓旭  在本刊中的所有文章
徐兆斌  在本刊中的所有文章
徐可笛  在本刊中的所有文章
朱耀伟  在本刊中的所有文章
金仲和  在本刊中的所有文章

参考文献:
[1] 陈全, 杨磊, 郭剑鸣, 等. 低轨巨型星座网络:组网技术与研究现状[J]. 通信学报, 2022, 43(5): 177-189 CHEN Quan, YANG Lei, GUO Jianming, et al. LEO mega-constellation network: networking technologies and state of the art[J]. Journal on Communications, 2022, 43(5): 177-189 (in Chinese)
[2] 王艳峰, 谷林海, 刘鸿鹏. 低轨卫星移动通信现状与未来发展[J]. 通信技术, 2020, 53(10): 2447-2453 WANG Yanfeng, GU Linhai, LIU Hongpeng. Status quo and future development of LEO satellite mobile communication[J]. Communications Technology, 2020, 53(10): 2447-2453 (in Chinese)
[3] KIKI M J M, IDDI I, OLIVERO M A B. Analysis of multiple access approaches on IoT via LEO satellite[C]//2020 IEEE 11th International Conference on Software Engineering and Service Science, 2020: 175-179
[4] SANJEEV Sharma, KUNTAL Deka, YI Hong, et al. Intelligent reflecting surface-assisted uplink SCMA system[J].IEEE Communications Letters, 2021, 25(8): 2728-2732
[5] 赵宏伟, 刘春阳, 许利, 等. 基于SCMA和卷积编码的联合检测译码算法[J]. 系统工程与电子技术,2021, 3(3): 847-853 ZHAO Hongwei, LIU Chunyang, XU Li, et al. Joint detection and decoding algorithm based on SCMA and convolution coding[J]. Systems Engineering and Electronics, 2021, 43(3): 847-853 (in Chinese)
[6] GUI Y, ZHU L, LIU J. SCMA secure communication scheme for satellite system based on distance spectrum[C]//2021 IEEE Wireless Communications and Networking Conference Workshops, 2021
[7] RAJASEKARAN A, VAMEGHESTAHBANATI M, FARSI M, et al. Resource allocation-based PAPR analysis in uplink SCMA-OFDM systems[J]. IEEE Access, 2019, 7: 162803-162817
[8] WU Y, ZHANG S, YAN C. Iterative multiuser receiver in sparse code multiple access systems[C]//IEEE International Conference on Communications, 2015
[9] DONG Fangqi, ZHENG Huijuan, MA Lei, et al. Generalized message passing detection of SCMA systems based on dynamic factor graph for better and flexible performance-complexity tradeoff[J]. Science China(Information Sciences), 2022, 65(5): 242-249
[10] POKAMESTOV D A, DEMIDOV A Y, KRYUKOV Y V, et al. Dynamically changing SCMA codebooks[C]//2017 International Siberian Conference on Control and Communications, 2017
[11] MANI V, JAISWAL D. Modified SCMA decoder for 5G uplink system[C]//5th IEEE India Council International Conference, 2018
[12] MIAO J, HU X, ZHAO Z. A low complexity multiuser detection scheme with dynamic factor graph for uplink SCMA systems[C]//2019 IEEE/CIC International Conference on Communications in China, 2019
[13] TANG S, LI H, ZHENG M. Low Complexity joint MPA detection for downlink MIMO-SCMA[C]//2016 IEEE Global Communications Conference, 2016
[14] 常超平. SCMA上行接收机研究与FPGA实现[D]. 重庆:重庆邮电大学, 2020 CHANG Chaoping. Research on uplink receiver of SCMA and its FPGA implementation[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2020 (in Chinese)
[15] 陈牧, 柯熙政. QPSK调制光通信中混合噪声的功率谱性能与误码率[J]. 红外与激光工程, 2017, 46(10): 313-318 CHEN Mu, KE Xizheng. Power spectrum performance and bit error rate of mixed noise in QPSK modulated optical communication[J]. Infrared and Laser Engineering, 2017,46(10): 313-318 (in Chinese)
[16] TONG L, SUN B, LI Z, et al. Analysis of channel characteristics and channel model for satellite communication system[C]//IEEE International Conference on Electronic Information & Communication Technology, 2016
[17] 杨晋生, 苑露露. 基于Lambertian模型的星间太赫兹通信信道特性分析[J]. 信号处理, 2022, 38(2): 232-240 YANG Jinsheng, YUAN Lulu. Analysis of channel characteristics for inter-satellite terahertz communication based on Lambertian model[J]. Journal of Signal Processing, 2022, 38(2): 232-240 (in Chinese)
[18] 雷拓峰, 倪淑燕, 程乃平, 等. 瑞利衰落信道下SCMA码本设计[J]. 通信学报, 2022, 43(4): 107-113 LEI Tuofeng, NI Shuyan, CHENG Naiping, et al. SCMA codebooks design for rayleigh fading channel[J]. Journal on Communications, 2022, 43(4): 107-113 (in Chinese)
[19] ZHANG Q, ZHANG S. Analysis and solution of multipath effect on wireless communications of launch vehicle[J].Aerospace China, 2019, 20(1): 16-21
[20] 姜春晓, 王佳蔚. 高动态卫星DSSS信号Turbo迭代捕获算法[J]. 通信学报, 2021, 42(8): 15-24 JIANG Chunxiao, WANG Jiawei. Turbo iterative acquisition algorithm for satellite high-mobility DSSS signal[J]. Journal on Communications, 2021, 42(8): 15-24 (in Chinese)
[21] CHEN P, HE Y. Analysis and simulation of multipath effect in high precision satellite communication based on ray-tracing approach[C]//2019 IEEE 2nd International Conference on Electronics and Communication Engineering, 2019
[22] JR R. A new multipath channel estimation and mitigation using annihilation filter combined tracking loop implementation in software GPS receivers[J]. Measurement Science and Technology, 2022, 33(4): 045105