论文:2023,Vol:41,Issue(4):635-643
引用本文:
杨恺昕, 罗凯, 黄闯, 李代金, 王谦, 古鉴霄, 李永丰. 非回转体航行器高速斜入水过程研究[J]. 西北工业大学学报
YANG Kaixin, LUO Kai, HUANG Chuang, LI Daijin, WANG Qian, GU Jianxiao, LI Yongfeng. Study on high-speed water entry process of non-rotating vehicles[J]. Journal of Northwestern Polytechnical University

非回转体航行器高速斜入水过程研究
杨恺昕, 罗凯, 黄闯, 李代金, 王谦, 古鉴霄, 李永丰
西北工业大学 航海学院, 陕西 西安 710072
摘要:
非回转体跨介质航行器能够更好适应空中高超声速飞行工况,但是在入水过程中的流体动力特性及运动稳定性存在新的问题。采用VOF多相流模型、Realizable k-ε湍流模型、Schnerr-Sauer空化模型,结合重叠网格技术,建立了非回转体入水过程运动与多相流场耦合的仿真方法,验证了所建模型的准确性,对横截面短长轴之比不同的航行器开展了斜入水过程仿真计算。结果表明:横截面短长轴之比虽然不会改变空泡形态,但是通过影响泡体相对位置关系对航行器的流体动力特性和运动特性都有影响;随着短长轴之比的减小,航行器的运动稳定性逐渐增加;但短长轴之比过小,则会影响减阻效果,并对结构安全性不利。
关键词:    非回转体航行器    高速入水    数值模拟    重叠网格   
Study on high-speed water entry process of non-rotating vehicles
YANG Kaixin, LUO Kai, HUANG Chuang, LI Daijin, WANG Qian, GU Jianxiao, LI Yongfeng
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The non-rotating trans-media vehicle can better adapt to the hypersonic flight conditions, but new problems in the hydrodynamic characteristics and motion stability arise during the water entry process. With the VOF multiphase model, Realizable k-ε turbulence model, and Schnerr-Sauer cavitation model, this paper establishes a simulation method of coupling the movement of non-roating body into water with multiphase flow fields based on overset grid technology, and the accuracy of the established model is verified. The simulation calculation of the oblique water entry process of the vehicle with different ratio of short axis to long axis in cross section is carried out. And the results show that although the ratio of short axis to long axis in cross section does not change the cavitation morphology, it affects the hydrodynamic and kinematic characteristics of the vehicle by influencing the relative position of the cavitation. As the ratio of short axis to long axis decreases, the motion stability of the vehicle increases gradually. However, if the ratio of short axis to long axis is too small, the drag reduction effect will be weakened, and the structure will suffer a bigger load.
Key words:    non-rotating vehicle    high-speed water entry    numerical simulation    overset mesh   
收稿日期: 2022-09-09     修回日期:
DOI: 10.1051/jnwpu/20234140635
基金项目: 水下信息与控制重点实验室开放研究项目(2021-JCJQ-LB-030-07)与中央高校基本科研业务费(G2022KY0603)资助
通讯作者: 黄闯(1989—),西北工业大学副研究员,主要从事超空泡航行器研究。e-mail:huangchuang@nwpu.edu.cn     Email:huangchuang@nwpu.edu.cn
作者简介: 杨恺昕(1998—),西北工业大学硕士研究生,主要从事跨介质航行器研究。
相关功能
PDF(4096KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杨恺昕  在本刊中的所有文章
罗凯  在本刊中的所有文章
黄闯  在本刊中的所有文章
李代金  在本刊中的所有文章
王谦  在本刊中的所有文章
古鉴霄  在本刊中的所有文章
李永丰  在本刊中的所有文章

参考文献:
[1] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(5): 152-157 HE Zhaoxiong, ZHENG Zhenshan, MA Dongli, et al. Development of foreign trans-media aircraft and its enlightenment to China[J]. Ship Sience and Technology, 2016, 38(9): 152-157 (in Chinese)
[2] 孙泽鹏, 宋乾福, 贾重任. 跨介质飞行器的应用与技术特点分析[J]. 军民两用技术与产品, 2015(10): 22-23 SUN Zepeng, SONG Qianfu, JIA Zhongren. Analysis of the application and technical characteristics of trans-media vehicles[J]. Dual Use Technologies & Products, 2015(10): 22-23 (in Chinese)
[3] FABIAN A, FENG Y, SWARTZ E, et al. Hybrid aerial underwater vehicle[R/OL]. (2012-08-01)[2022-09-09]. http://digitalcommons.olin.edu/scope_2012/B
[4] SIDDALL R, ORTEGA A A, KOVAC M. Wind and water tunnel testing of a morphing aquatic micro air vehicle[J]. Interface Focus, 2017, 7(1): 1-5
[5] MA K Y, CHIRARATTANANON P, FULLER S B, et al. Controlled flight of a biologically inspired, insect-scale robot[J].Science, 2013, 340(6132): 603-607
[6] 安复兴, 李磊, 苏伟, 等. 高超声速飞行器气动设计中的若干关键问题[J]. 中国科学:物理学、力学、天文学, 2021, 51(10): 6-25 AN Fuxing, LI Lei, SU Wei, et al. Key issues in hypersonic vehicle aerodynamic design[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2021, 51(10): 6-25 (in Chinese)
[7] 贺永圣. 仿生跨介质飞行器水气动布局融合设计及出水特性分析[D]. 长春: 吉林大学, 2021 HE Yongsheng. Fusion design of hydrodynamic and aerodynamic layout and analysis of characteristics of water exit for the bionic cross-medium aircraft[D]. Changchun: Jilin University, 2021 (in Chinese)
[8] WORTHINGTON A M, COLE R S. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London, 1900, 194: 175-199
[9] TRUSCOTT T T. Cavity dynamics of water entry for spheres and ballistic projectiles[D]. Cambridge: Massachusetts Institute of Technology, 2009
[10] TRUSCOTT T T, TECHET A H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12):121703
[11] 侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究[J]. 兵工学报, 2020, 41(2): 332-341 HOU Yu, HUANG Zhengui, GUO Zeqing, et al. Experimental investigation on shallow-angle oblique water-entry of a high-speed supercavitating projectile[J] Acta Armamentarii, 2020, 41(2): 126-135 (in Chinese)
[12] 陈诚, 袁绪龙, 党建军, 等. 超空泡航行器20°角倾斜入水冲击载荷特性试验研究[J]. 兵工学报, 2018, 39(6): 1159-1164 CHEN Cheng, YUAN Xulong, DANG Jianjun, et al. Experimental investigation into impact load during oblique water-entry of a supercavitating vehicle at 20°[J]. Acta Armamentarii, 2018, 39(6): 1159-1164 (in Chinese)
[13] 袁绪龙, 栗敏, 丁旭拓, 等. 跨介质航行器高速入水冲击载荷特性[J]. 兵工学报, 2021, 42(7): 1140-1149 YUAN Xulong, LI Min, DING Xutuo, et al. Impact load characteristics of a trans-media vehicle during high-speed water-entry[J]. Acta Atmamentarii, 2021, 42(7): 1440-1449 (in Chinese)
[14] 郭子涛, 陈拓, 郭钊, 等. 弹体水平入水的空泡扩展相关特性研究[J]. 振动与冲击, 2019, 38(4): 90-94 GUO Zitao, CHEN Tuo, GUO Zhao, et al. A study on the cavitation expansion related characteristics induced by horizontal water entry of projectiles[J]. Journal of Vibration and Shock, 2019, 38(2): 90-94 (in Chinese)
[15] 黄鸿鑫, 张会锁, 魏锦, 等. 不同结构射弹高速入水稳定性分析[J]. 兵器装备工程学报, 2019, 40(11): 50-54 HUANG Hongxin, ZHANG Huisuo, WEI Jin, et al. Stability analysis of high-speed water entry of different structure projectiles[J]. Journal of Ordnance Equipment Engineering, 2019, 40(11): 50-54 (in Chinese)
[16] 马庆鹏, 魏英杰, 王聪, 等. 锥头圆柱体高速入水空泡数值模拟[J]. 北京航空航天大学学报, 2014, 40(2): 204-209 MA Qingpeng, WEI Yingjie, WANG Cong, et al. Numerical simulation of high-speed water-entry cavity of cone cylinder[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 204-209 (in Chinese)
[17] 胡青青. 不同倾角下钝体入水后的超空泡流动的实验观察及数值计算[D]. 杭州: 浙江理工大学, 2014 Hu Qingqing. Experimental observation and numerical calculation of supercavity flow of blunt body under different inclination angle into the water[D]. Hangzhou: Zhejiang Sci-Tech University, 2014 (in Chinese)
[18] 唐楚淳, 黄振贵, 陈志华, 等. 斜截体头型弹丸低速垂直入水实验研究[J]. 兵工学报, 2020, 41(增刊1): 54-58 TANG Chuchun, HUAN Zhengui, CHEN Zhihua, et al. Experimental study of the low-speed vertical water entry process of oblique head projectile[J]. Acta Armamentarii, 2020, 41(suppl 1): 54-58 (in Chinese)
[19] 华扬, 施瑶, 潘光, 等. 非对称头型航行器入水空泡形态与弹道特性的实验研究[J]. 西北工业大学学报, 2021, 39(6): 1249-1258 HUA Yang, SHI Yao, PAN Guang, et al. Experimental study on water-entry cavity and trajectory of vehicle with asymmetric nose shape[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1249-1258 (in Chinese)
[20] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012 GUO Zitao. Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums[D]. Harbin: Harbin Institute of Technology, 2012 (in Chinese)
[21] 陈晨, 魏英杰, 王聪. 小型运动体高速倾斜入水空泡流动数值研究[J]. 兵工学报, 2019, 40(2): 334-344 CHEN Chen, WEI Yingjie, WANG Cong. Computational analysis of cavity flow induced by high-speed oblique water entry of axisymmetric body[J]. Acta Armamentarii, 2019, 40(2): 334-344 (in Chinese)