论文:2023,Vol:41,Issue(3):626-634
引用本文:
刘秉, 娄路亮, 李东, 黄辉, 高红岗. 高混合比双组元推进剂剩余量偏置控制研究[J]. 西北工业大学学报
LIU Bing, LOU Luliang, LI Dong, HUANG Hui, GAO Honggang. Study on bias residual control of high mixture ratio bi-propellant[J]. Journal of Northwestern Polytechnical University

高混合比双组元推进剂剩余量偏置控制研究
刘秉1,2, 娄路亮2, 李东3, 黄辉2, 高红岗4
1. 西北工业大学 无人系统技术研究院, 陕西 西安 710072;
2. 北京宇航系统工程研究所, 北京 100076;
3. 中国运载火箭技术研究院, 北京 100076;
4. 西北工业大学 民航学院, 陕西 西安 710072
摘要:
运载能力是火箭的核心性能指标,大型液体运载火箭大都采用高性能的双组元推进剂,推进剂的使用及剩余量控制对运载能力和运载效率影响很大,特别是入轨级。针对目前火箭常用的高性能双组元推进剂,利用系统对推进剂混合比偏差的调节能力,研究了3种控制模型(等概率耗尽模型、等质量剩余模型、最优剩余模型)及其对运载能力的影响。根据理论分析、模拟打靶及飞行数据对比,发现相较传统的氧燃推进剂等比例剩余控制策略,对于高混合比的氢氧推进剂,氧化剂和燃烧剂在非等比例剩余的情况下能够减少推进剂剩余量,提升运载能力,等质量剩余和最优剩余差别较小,在工程上可以采用更简单的等质量剩余控制推进剂剩余量。
关键词:    运载火箭    运载能力    推进剂剩余偏差    高混合比    双组元   
Study on bias residual control of high mixture ratio bi-propellant
LIU Bing1,2, LOU Luliang2, LI Dong3, HUANG Hui2, GAO Honggang4
1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China;
2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China;
3. China Academy of Launch Vehicle Technology, Beijing 100076, China;
4. School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Lift capacity is the key performance of the launch vehicle, and high chemical energy bi-propellants are commonly used for the modern large liquid rockets. The residual unburned propellant has a strong effect on the lift capacity and the lift efficiency, especially for the orbital stages. In this paper, the bias residual control of high mixture ratio propellant is studied, three models, including equal-probability depletion model (EPDM), equal-mass residual model(EMRM) and optimum residual model(ORM) are analyzed. Comparing with the traditional equal-probability depletion, the bias residual control of bi-propellants, especially for LOX and LH2, is benefit to the lift capacity. The effect between EMRM and ORM on the residual unburned propellant is negligible, and the EMRM is preferred in engineering.
Key words:    launch vehicle    lift capacity    bias residual    high mixture ratio    bi-propellant   
收稿日期: 2022-07-29     修回日期:
DOI: 10.1051/jnwpu/20234130626
基金项目: 国防科技基础加强计划技术领域基金(2022-JCJQ-JJ-0640)资助
通讯作者: 娄路亮(1975—),北京宇航系统工程研究所研究员,主要从事运载火箭总体技术研究。e-mail:1166522@qq.com     Email:1166522@qq.com
作者简介: 刘秉(1985—),西北工业大学博士研究生,主要从事无人系统技术及运载火箭总体技术研究。
相关功能
PDF(3075KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘秉  在本刊中的所有文章
娄路亮  在本刊中的所有文章
李东  在本刊中的所有文章
黄辉  在本刊中的所有文章
高红岗  在本刊中的所有文章

参考文献:
[1] 王基祥, 张振华, 王丹阳. 世界航天运载器大全[M]. 北京:宇航出版社, 1996:382-383 WANG Jixiang, ZHANG Zhenhua, WANG Danyang. The world book of space launch vehicles[M]. Beijing:China Astronautic Publishing House, 1996:382-383(in Chinese)
[2] 张智. 载人运载火箭技术回顾与展望[J]. 宇航总体技术, 2018, 2(2):56-61 ZHANG Zhi. Review and prospect of manned launch vehicle technology[J]. Astronautical Systems Engineering Technology, 2018, 2(2):56-61(in Chinese)
[3] 武新峰, 彭祺擘, 张海联, 等. 国内外载人运载火箭发展历程分析与思考[J]. 载人航天, 2020(6):783-793 WU Xinfeng, PENG Qibo, ZHANG Hailian, et al. Analysis and thinking on the development of manned launch vehicles at home and abroad[J]. Manned Aerospace, 2020(6):783-793(in Chinese)
[4] 王小军, 徐利杰. 我国新一代中型高轨运载火箭发展研究[J]. 宇航总体技术, 2019, 3(5):1-9 WANG Xiaojun, XU Lijie. Research on the development of China's new generation medium high orbit launch vehicle[J]. General Technology of Aerospace, 2019, 3(5):1-9(in Chinese)
[5] 龙乐豪, 郑立伟. 关于重型运载火箭若干问题的思考[J]. 宇航总体技术, 2017, 1(1):8-12 LONG Lehao, ZHENG Liwei. Reflections on some problems of heavy launch vehicles[J]. General Technology of Aerospace, 2017, 1(1):8-12(in Chinese)
[6] 刘佳佳, 严宝峰, 毕永涛, 等. 关于发展商业小火箭的几点思考[J]. 宇航总体技术, 2018, 2(5):65-70 LIU Jiajia, YAN Baofeng, BI Yongtao, et al. Some thoughts on the development of commercial small rockets[J]. General Aerospace Technology, 2018, 2(5):65-70(in Chinese)
[7] 秦旭东, 容易, 王小军, 等. 基于划代研究的中国运载火箭未来发展趋势分析[J]. 导弹与航天运载技术, 2014, 1:1-4 QIN Xudong, RONG Yi, WANG Xiaojun, et al. Analysis on the future development trend of China's launch vehicles based on generational research[J]. Missiles and Space Vehicles, 2014, 1:1-4(in Chinese)
[8] 沈赤兵. 推进剂利用系统对液体火箭发动机性能的影响分析[J]. 推进技术, 1997, 18(6):6 SHEN Chibing. Analysis of the influence of propellant utilization system on the performance of liquid-propellant rocket[J]. Propulsion Technology, 1997, 18(6):6(in Chinese)
[9] 周亚强, 娄路亮, 牟宇. 国内外典型火箭运载能力变化分析[J]. 载人航天, 2017, 23(6):737-742 ZHOU Yaqiang, LOU Luliang, MOU Yu. Analysis on change of carrying capacity of typical launch vehicles at home and abroad[J]. Manned Aerospace, 2017, 23(6):737-742(in Chinese)
[10] ABRAMS I J. Optimum selection of fuel bias for maximizing the range and for minimizing the residual propellant of the Thor, Atlas and Titan missiles[J]. Planetary and Space Science, 1961, 4(1):34-44
[11] 陈士强, 黄辉, 邵业涛, 等. 航天动力系统未来需求方向及发展建议的思考[J]. 宇航总体技术, 2019, 3(1):62-70 CHEN Shiqiang, HUANG Hui, SHAO Yetao, et al. Reflections on the future demand direction and development suggestions of aerospace power system[J]. Astronautical Systems Engineering Technology, 2019, 3(1):62-70(in Chinese)
[12] NICHOLS R H. Saturn S-IV cryogenic weigh system part I:propellant utilization[J]. IEEE Trans on Aerospace, 1965, AS-3(2):144-151
[13] DODGE F T. Propellant mass gauging:database of vehicle applications and research and development studies[R]. NASA/CR-215281, 2008
[14] SZABO S V, BERNS JR JAMES A, STOFAN A J. Centaur launch vehicle propellant utilization system[R]. NASA TND-4848, 1958
[15] MAGRINI O J. Analysis of centaur propellant utilization difference bridge[R]. NASA TM X-1440, 1958
[16] 葛李虎, 邹佩华. 推进剂利用系统在国外型号上的应用[J]. 世界导弹与航天,1987, 11:43-48 GE Lihu, ZOU Peihua. Application of propellant utilization system in foreign models[J]. World Missiles and Aerospace, 1987, 11:43-48(in Chinese)
[17] 龙乐豪. 总体设计(上)[M]. 北京:中国宇航出版社,1989 LONG Lehao. Overall design(I)[M]. Beijing:China Astronautic Publishing House, 1989(in Chinese)
[18] 李东, 王珏, 李平岐, 等. 我国新一代大型运载火箭长征-5首飞大捷[J]. 国际太空, 2016(11):1-7 LI Dong, WANG Jue, LI Pingqi, et al. Long March 5, China's new generation of large carrier rocket, achieved great success in its first flight[J]. International space, 2016(11):1-7(in Chinese)
[19] 李东, 王珏, 何巍, 等. 长征五号运载火箭总体方案及关键技术[J]. 导弹与航天运载技术, 2017(3):1-5 LI Dong, WANG Jue, HE Wei, et al. The overall scheme and key technologies of Long March 5 launch vehicle[J]. Missile and Aerospace Carrier Technology, 2017(3):1-5(in Chinese)
[20] 龙乐豪, 郑立伟. 关于重型运载火箭若干问题的思考[J]. 宇航总体技术, 2017, 1(1):8-12 LONG Lehao, ZHENG Liwei. Thoughts on some problems of heavy launch vehicle[J]. Astronautical Systems Engineering Technology, 2017, 1(1):8-12(in Chinese)
[21] 刘竹生, 张博戎. 运载火箭总体设计多学科优化方法发展及展望[J]. 宇航总体技术, 2017,1(2):1-6 LIU Zhusheng, ZHANG Borong. Development and prospect of multidisciplinary optimization methods for launch vehicle overall design[J]. Astronautical Systems Engineering Technology, 2017, 1(2):1-6(in Chinese)
[22] 龙乐豪, 李平岐, 秦旭东, 等. 我国航天运输系统60年发展回顾[J]. 宇航总体技术, 2018, 2(2):1-6 LONG Lehao, LI pingqi, QIN Xudong, et al. Review of the development of China's space transportation system in the past 60 years[J]. Overall Space Technology, 2018, 2(2):1-6(in Chinese)
[23] 余梦伦. 20世纪90年代大运载总体方案论证的一些回顾[J]. 宇航总体技术, 2018, 2(2):7-16 YU Menglun. Some reviews of the overall scheme demonstration of large-scale carrier in the 1990s[J]. Astronautical Systems Engineering Technology, 2018, 2(2):7-16(in Chinese)
[24] 郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019, 3(2):12-17 ZHENG Mengwei, YUE Wenlong, SUN Jiguo, et al. Thoughts on the development of high thrust oxyhydrogen engine in China[J]. Astronautical Systems Engineering Technology, 2019, 3(2):12-17(in Chinese)
[25] 刘秉, 李东. 运载火箭推进剂利用系统变门限控制方法研究[J]. 导弹与航天运载技术, 2021(3):1-5 LIU Bing, LI Dong. Research on variable threshold control method for propellant utilization system of launch vehicles[J]. Missile and Aerospace Launch Technology, 2021(3):1-5(in Chinese)
[26] 高晨, 刘博龙, 刘洋, 等. 低温推进剂利用系统仿真平台设计与应用[J]. 导弹与航天运载技术, 2019(4):43-51 GAO Chen, LIU Bolong, LIU Yang, et al. Design and application of simulation platform for cryogenic propellant utilization system[J]. Missile and Aerospace Delivery Technology, 2019(4):43-51(in Chinese)
[27] 李强, 李国爱, 牟宇. 运载火箭推进剂利用系统建模与仿真[J]. 导弹与航天运载技术, 2013(5):32-36 LI Qiang, LI Guoai, MOU Yu. Modeling and simulation of propellant utilization system of launch vehicle[J]. Missiles and Space Vehicles, 2013(5):32-36(in Chinese)
[28] WEI Jiang, HUI Li, TAO Huanmei. The simulation of launch vehicle propellant-utilization system[C]//International Conference on Mechatronics and Automation, 2006(in Chinese)
[29] SONG E J, CHO S, ROH W R. Optimal selection of fuel bias and propellant residual analysis of a liquid rocket[J]. Journal of the Korean Society for Aeronautical and Space Sciences, 2015, 43(1):88-95
[30] SUTTON G P. Rocket propulsion elements[M].7th ed. New Jersey:John Wiley & Sons, Inc. Hoboken,
[31] 韩红伟, 王艺杰. 液体火箭发动机混合比影响因素研究[J]. 导弹与航天运载技术, 2022(1):36-40 HAN Hongwei, WANG Yijie. Study on the factors affecting the mixing ratio of liquid rocket engines[J]. Missiles and Space Vehicles, 2022(1):36-40(in Chinese)
[32] 符全军. 液体推进剂的现状及未来发展趋势[J]. 火箭推进, 2004(1):6 FU Quanjun. Current status and future development trend of liquid propellant[J]. Journal of Rocket Propulsion, 2004(1):6(in Chinese)
[33] 张起源. 国外液体推进剂的发展和现状[J]. 国外导弹与宇航, 1980(9):9-17 ZHANG Qiyuan. Development and current situation of foreign liquid propellant[J]. Foreign Missiles and Aerospace, 1980(9):9-17(in Chinese)
[34] 刘红军. 液氧/煤油火箭发动机推力和混合比的非线性调整研究[J]. 推进技术, 1998, 19(4):4 LIU Hongjun. Research on nonlinear adjustment of thrust and mixing ratio of liquid oxygen/kerosene rocket engine[J]. Propulsion Technology, 1998, 19(4):4(in Chinese)
[35] 华棣, 陈昭. 关于推进剂安全余量问题的讨论[J]. 航空学报, 1979(4):37-52 HUA Di, CHEN Zhao. Discussion on propellant safety margin[J]. Acta Aeronautica Sinica, 1979(4):37-52(in Chinese)
[36] 陈建华, 曹晨, 杨永强. "长征五号"火箭液氧煤油发动机总体技术[J]. 深空探测学报, 2021, 8(4):354-361 CHEN Jianhua, CAO Chen, YANG Yongqiang. General technology of liquid oxygen kerosene engine of "Long March 5" rocket[J]. Journal of Deep Space Exploration, 2021, 8(4):354-361(in Chinese)
[37] 王维彬, 巩岩博. 50吨级氢氧火箭发动机的设计与研制[J]. 推进技术, 2021, 42(7):8 WANG Weibin, GONG Yanbo. Design and development of a 50 ton hydrogen oxygen rocket engine[J]. Propulsion Technology, 2021, 42(7):8(in Chinese)