论文:2023,Vol:41,Issue(3):595-600
引用本文:
高鹏骋, 黄桥高, 宋东, 潘光, 马云龙. 蝠鲼集群滑翔水动力性能研究[J]. 西北工业大学学报
GAO Pengcheng, HUANG Qiaogao, SONG Dong, PAN Guang, MA Yunlong. Hydrodynamic performance study of manta ray gliding in groups[J]. Journal of Northwestern Polytechnical University

蝠鲼集群滑翔水动力性能研究
高鹏骋1,2, 黄桥高1,2, 宋东1,2, 潘光1,2, 马云龙1,2
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西北工业大学 无人水下运载技术重点实验室, 陕西 西安 710072
摘要:
为探究集群滑翔编队对蝠鲼水动力性能的影响,采用数值模拟的方法研究了多个蝠鲼在串联、三角、钻石排布下进行滑翔运动时的阻力、升力及流场压力分布情况。数值计算结果表明,位于队首的领航蝠鲼总是承受最小的阻力,在大多数情况下,位于队尾的蝠鲼承受最大阻力。对流场压力分布进行研究发现,减阻效果主要来源于集群中各单体间的高压区及低压区分布,高压区有益于位于队前蝠鲼减阻,在特定情况下,低压区的存在会产生向前吸力有利于减小队尾蝠鲼阻力。研究发现当蝠鲼进行前二后一、四体钻石、六体串联及六体钻石集群滑翔时能降低系统平均阻力,这为仿生航行器集群编队设置提供理论指导。
关键词:    蝠鲼    集群滑翔    编队设置    水动力特性    减阻   
Hydrodynamic performance study of manta ray gliding in groups
GAO Pengcheng1,2, HUANG Qiaogao1,2, SONG Dong1,2, PAN Guang1,2, MA Yunlong1,2
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory of Unmanned Underwater Vehicle Technology of Ministry of Industry and Information Technology, Xi'an 710072, China
Abstract:
To investigate the effect of group gliding formation on the hydrodynamic performance of manta rays, numerical simulations were used to investigate the drag, the lift and pressure distribution of multiple manta rays in tandem, triangular and diamond-shaped arrangements. The simulation results show that the leader manta ray at the head of the group always suffers the least drag, and in most cases, the companion manta ray at the tail of the group suffers the most drag. The pressure distribution in the flow field shows that the drag reduction effect mainly comes from the distribution of high pressure and low pressure zones among the individual rays in the cluster, the high pressure zone is beneficial to the manta rays at the front of the group, and under certain circumstances, the presence of low pressure zone generates forward suction to reduce the drag of the manta rays at the end of the group. It is found that when manta rays glide in "two in front and one at the back", four-body diamond, six-body tandem and six-body diamond arrangement, the average drag of the system can be reduced, which provides theoretical guidance for the formation of bionic vehicle groups.
Key words:    manta rays    group gliding    formation settings    hydrodynamic performance    drag reduction   
收稿日期: 2022-07-07     修回日期:
DOI: 10.1051/jnwpu/20234130595
基金项目: 国家重点研发计划(2020YFB1313200)、国家自然科学基金(51879220,52001260,52201381)与西北工业大学博士论文创新基金(CX2022025)资助
通讯作者: 黄桥高(1983—),西北工业大学教授,主要从事推进器水动力学、新型水中兵器和新概念水下航行器水动力关键技术及应用研究。e-mail:huangqiaogao@nwpu.edu.cn     Email:huangqiaogao@nwpu.edu.cn
作者简介: 高鹏骋(1998—),西北工业大学博士研究生,主要从事仿生水下航行器集群水动力特性研究。
相关功能
PDF(2908KB) Free
打印本文
把本文推荐给朋友
作者相关文章
高鹏骋  在本刊中的所有文章
黄桥高  在本刊中的所有文章
宋东  在本刊中的所有文章
潘光  在本刊中的所有文章
马云龙  在本刊中的所有文章

参考文献:
[1] CLARK R P, SMITS A J. Visualization of the unsteady wake of a manta ray model[C]//44th AIAA Aerospace Sciences Metting and Exhibit, Reno, Nevada, USA, 2006
[2] TANGORRA J L, DAVIDSON S N, HUNTER I W, et al. The development of a biologically inspired propulsor for unmanned underwater vehicles[J]. Ocean Engineering, 2007, 32(3):533-550
[3] LIGHTHILL S J. Aquatic animal propulsion of high hydromechanical efficiency[J]. Journal of Fluid Mechanics, 1970, 44(2):265
[4] WEIHS D. Hydromechanics of fish schooling[J]. Nature, 1973, 241(5387):290-291
[5] PORTUGAL S J, HUBEL T Y, FRITZ J, et al. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight[J]. Nature, 2014, 505(7483):399-402
[6] CHAO L M, PAN G, ZHANG D, et al. On the thrust generation and wake structures of two travelling-wavy foils[J]. Ocean Engineering, 2019, 183:167-174
[7] MAERTENS A P, GAO A, TRIANTAFYLLOU M S. Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers[J]. Journal of Fluid Mechanics, 2017, 813:301-345
[8] LI S, LI C, XU L, et al. Numerical simulation and analysis of fish-like robots swarm[J]. Applied Sciences, 2019, 9(8):1652
[9] DEWEY P A, QUINN D B, BOSCHITSCH B M, et al. Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration[J]. Physics of Fluids, 2014, 26(4):041903
[10] BOSCHITSCH B M, DEWEY P A, SMITS A J. Propulsive performance of unsteady tandem hydrofoils in an in-line configuration[J]. Physics of Fluids, 2014, 26(5):051901
[11] PEI Z K, LIU J K, CHEN S M, et al. Hydrodynamic performance of beas swimming side by side[J]. Measurement & Control Technology, 2016,35(12):16-20
[12] 张栋. 牛鼻鲼游动过程中柔性变形对水动力影响研究[D]. 西安:西北工业大学,2020 ZHANG Dong. Flexible deformation effect on the hydrodynamic performance of a rhinoptera javanica in different swimming behaviors[D]. Xi'an:Northwestern Polytechnical University, 2020
[13] HAN P, PAN Y, LIU G, et al. Propulsive performance and vortex wakes of multiple tandem foils pitching in-line[J]. Journal of Fluids and Structures, 2022, 108:103422
[14] ZARRUK G A, BRANDNER P A, PEARCE B W, et al. Experimental study of the steady fluid-structure interaction of flexible hydrofoils[J]. Journal of Fluids and Structures, 2014, 51:326-343