论文:2023,Vol:41,Issue(3):518-528
引用本文:
任娇, 冀晓翔, 李江红, 韩磊, 吴亚锋. 一种基于改进Denavit-Hartenberg方法的三轴“动中通”天线运动学建模方案[J]. 西北工业大学学报
REN Jiao, JI Xiaoxiang, LI Jianghong, HAN Lei, WU Yafeng. A kinematic modeling scheme of three-axis “Satcom-on-the-Move” antenna based on modified Denavit-Hartenberg method[J]. Journal of Northwestern Polytechnical University

一种基于改进Denavit-Hartenberg方法的三轴“动中通”天线运动学建模方案
任娇1, 冀晓翔1, 李江红1, 韩磊2, 吴亚锋1
1. 西北工业大学 动力与能源学院, 陕西 西安 710072;
2. 中国人民解放军陆军工程大学 通信工程学院, 江苏 南京 210007
摘要:
为解决目前三轴"动中通"天线建模方法存在的模型精度低、可移植性差等缺点,提出一种新型改进Denavit-Hartenberg (new modified DH,NMDH)方法三轴"动中通"天线运动学建模方案。为克服天线固有机械结构导致的建模困难,同时满足改进Denavit-Hartenberg (modified DH,MDH)方法的建模要求,在MDH方法的基础上,分别设计加入虚拟坐标系和辅助坐标系,得到三轴"动中通"天线的正向运动学模型及其逆运动学解。通过数字仿真验证了NMDH建模方案的正确性。系统试验结果表明,文中提出的NMDH建模方案取得了良好的天线跟踪卫星效果,并且比工程应用中常用的系统辨识建模方法具有更强的可移植性。
关键词:    三轴动中通天线    新型改进Denavit-Hartenberg方法    虚拟坐标系    辅助坐标系    运动学模型   
A kinematic modeling scheme of three-axis “Satcom-on-the-Move” antenna based on modified Denavit-Hartenberg method
REN Jiao1, JI Xiaoxiang1, LI Jianghong1, HAN Lei2, WU Yafeng1
1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
2. College of Communications Engineering, Army Engineering University of PLA, Nanjing 210007, China
Abstract:
The current three-axes Satcom-on-the-Move(SOTM) antenna modeling method has some shortcomings, such as low model accuracy, poor portability and so on. In order to solve the above-mentioned shortcomings, a new modified Denavit-Hartenberg(NMDH) kinematics modeling scheme for the three-axes SOTM antenna was proposed. To overcome the modeling difficulties caused by the inherent mechanical structure of the antenna, and meet the requirements of the modified Denavit-Hartenberg(MDH) method, the virtual coordinate system and auxiliary coordinate systems are designed and added respectively on the basis of the MDH method, the forward kinematics model and inverse kinematics solution of the three-axes SOTM antenna are obtained. The correctness of the NMDH modeling scheme is verified by digital simulation. Finally, the system tests are carried out. The test results show that the NMDH modeling scheme proposed in this paper achieves good effect of antenna tracking satellite, and has stronger portability than the system identification modeling method commonly used in engineering.
Key words:    three-axis Satcom-on-the-Move antenna    new modified Denavit-Hartenberg method(NMDH)    virtual frame    auxiliary frame    kinematic model   
收稿日期: 2022-08-31     修回日期:
DOI: 10.1051/jnwpu/20234130518
通讯作者: 李江红(1970—),西北工业大学副教授,主要从事系统工程及应用研究。e-mail:jhli@nwpu.edu.cn     Email:jhli@nwpu.edu.cn
作者简介: 任娇(1989—),西北工业大学博士研究生,主要从事"动中通"伺服控制系统研究。
相关功能
PDF(4950KB) Free
打印本文
把本文推荐给朋友
作者相关文章
任娇  在本刊中的所有文章
冀晓翔  在本刊中的所有文章
李江红  在本刊中的所有文章
韩磊  在本刊中的所有文章
吴亚锋  在本刊中的所有文章

参考文献:
[1] VADIM S, RADEK D, VACLAV K, et al. Missile guidance systems for UAS landing application[C]//2016 17th International Conference on Mechatronics-Mechatronika, Prague, 2016
[2] 姜君. 用于移动载体卫星通信的动中通系统若干关键问题研究[D]. 南京:南京理工大学, 2012 JIANG Jun. Research on several key problems of mobile satellite communication system used on moving carrier[D]. Nanjing:Nanjing University of Science and Technology, 2012(in Chinese)
[3] GUNNAR R, JAMES D. Servo requirements for FCC VMES compliance:servo performance levels required to meet FCC VMES pointing requirements for Satcom-on-the-Move antenna on ground vehicles[C]//2010 Military Communications Conference, San Jose, 2010
[4] WEN C, TAN M, SU W. An H2/H control design for mobile satcom antenna servo systems[C]//2016 35th Chinese Control Conference, Chengdu, 2016
[5] 陆叶, 邓桐彬, 蒋忠伟, 等. 基于自抗扰算法的"动中通"系统控制策略[J]. 计算机测量与控制, 2017, 25(3), 63-66 LU Ye, DENG Tongbin, JIANG Zhongwei, et al. An active disturbance rejection control strategy for SOTM servo control system[J]. Computer Measurement & Control, 2017, 25(3):63-66(in Chinese)
[6] 李耀. 动中通伺服控制系统的设计与实现[D]. 天津:天津大学, 2015 LI Yao. Design and implementation of servo system for satellite communication in motion[D]. Tianjin:Tianjin University, 2015(in Chinese)
[7] SINA K. Modelling and stabilization of a three-axis ship-mounted mobile antenna system[J]. Journal of Engineering for the Maritime Environment, 2016, 231(2), 533-541
[8] XIE J, QIANG W, LIANG B, et al. Inverse kinematics problem for 6-DOF space manipulator based on the theory of screws[C]//2007 IEEE International Conference on Robotics and Biomimetics, Sanya, 2007
[9] 吴磊, 史仪凯, 王萑. 四自由度机械手臂运动学分析及雅可比矩阵求解[J]. 机械科学与技术, 2009, 28(6):764-767 WU Lei, SHI Yikai, WANG Huan. Kinematics analysis and the Jacobian matrix solution for a four degree of freedom (4-DOF) mechanical arm[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(6):764-767(in Chinese)
[10] ROHIT M. On-satellite testing of mobile communication antennas for compliance to VMES, ESV, and other pointing accuracy requirements[C]//2011 Military Communications Conference, Baltimore, 2011
[11] MUSTAFA C, OGUZ H, SETA B, et al. Cascade control of SATCOM on the Move(SOTM) antennas with Jacobian operator[C]//2019 7th International Conference on Control, Mechatronics and Automation, Delft, 2019
[12] CHEN H, MA H, JIANG H, et al. Kinematic modeling of 3P2R welding robot based on D-H parameters[C]//2021 3rd International Conference on Computer, Communications and Mechatronics Engineering, Xiamen, 2021
[13] ZANG Q, ZHU Q, TU Z, et al. Kinematics analysis and simulation of 6R industrial robot[C]//2020 International Conference on Guidance, Navigation and Control, Tianjin, 2020
[14] BIAN Z, YE Z, MU W. Kinematic analysis and simulation of 6-DOF industrial robot capable of picking up die-casting products[C]//2016 IEEE International Conference on Aircraft Utility Systems, Beijing, 2016
[15] KAMALDIP G, JATIN S, ANKITKUMAR S, et al. An arm robot for simplified robotic pedagogy:fabrication method, DH theory and verification through MATLAB and robot analyzer[C]//2nd International Conference on Electronics, Biomedical Engineering, and Health Informatics, Surabaya, 2021
[16] OGUZ H, MUSTAFA C, UGUR T. Kinematics and tracking control of a four axis antenna for Satcom on the Move[C]//The 2018 International Power Electronics Conference, Niigata, 2018
[17] XIAO F, LI G, JIANG D, et al. A effective and unified method to derive the inverse kinematics formulas of general six-DOF manipulator with simple geometry[J]. Mechanism and Machine Theory, 2021, 159:104365
[18] LIU Y, XI J, BAI H, et al. A general robot inverse kinematics solution method based on improved PSO algorithm[J]. IEEE Access, 2021, 9:32341-32350
[19] MOHAMED H, MOUSTAFA E, ROSHDY A, et al. SATCOM on-the-Move antenna tracking survey[C]//2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations, Alexandria, 2021
[20] IBRAHIM K. MIMO control of three-axis ship-mounted mobile antenna systems[J]. International Journal of Control, 2018, 91(2):346-358
[21] JAMES D. Control systems for mobile satcom antennas[J]. IEEE Control Systems Magazine, 2008, 28(1):86-101
[22] JAN N, MICHAL B, MARTIN A, et al. Computationally fast dynamical model of a SATCOM antenna suitable for extensive optimization tasks[J]. Advance in Military Technology, 2019, 14(1), 21-30