论文:2023,Vol:41,Issue(3):500-509
引用本文:
宋勇, 张蕾, 田荣, 王晓华. 复杂多场景下机械臂避障运动规划方法研究[J]. 西北工业大学学报
SONG Yong, ZHANG Lei, TIAN Rong, WANG Xiaohua. Research on obstacle avoidance motion planning method of manipulator in complex multi scene[J]. Journal of Northwestern Polytechnical University

复杂多场景下机械臂避障运动规划方法研究
宋勇, 张蕾, 田荣, 王晓华
1. 西安工程大学 电子信息学院, 陕西 西安 710048;
2. 陕西人工智能联合实验室(西安工程大学分部), 陕西 西安 710048
摘要:
为提高工业机械臂在狭窄通道、多障碍物等复杂多场景下避障运动规划的成功率和效率,建立了基于圆柱体和球体包围盒机械臂与障碍物之间的碰撞检测模型,并提出了一种基于启发式概率融合人工势场法的改进型RRT*算法(P-artificial potential field-RRT*,PAPF-RRT*)。采样上引入概率目标偏向与随机采样点优选策略,对采样点进行位置优选约束,增强采样导向性和质量;为改变传统新节点扩展方向和特殊环境下局部最优问题,融合人工势场法的目标引力与障碍物斥力和自适应步长,使算法在APF产生的合力范围下实时引导新节点扩展方向和步长大小,降低过度的探索和碰撞区域扩展;对冗余节点进行删除,并采用三次B样条插值优化,提高机械臂轨迹的柔顺性。仿真结果表明,所提算法较传统RRT*算法在平均路径搜索时间上降低了56.75%,路径长度缩短了17.74%。导入机械臂模型后可视化仿真结果证明,所提算法可使机械臂成功避障且快速平稳运行到目标点。
关键词:    机械臂运动规划    渐进最优快速拓展随机树算法    启发式概率    人工势场法    自适应步长    三次B样条   
Research on obstacle avoidance motion planning method of manipulator in complex multi scene
SONG Yong, ZHANG Lei, TIAN Rong, WANG Xiaohua
1. School of Electronics and Information, Xi'an Polytechnic University, Xi'an 710048, China;
2. Xi'an Polytechnic University Branch of Shaanxi Artificial Intelligence Joint Laboratory, Xi'an 710048, China
Abstract:
In order to improve the efficiency and success rate of obstacle avoidance motion planning of industrial manipulator in complex multi scenes, a collision detection model between manipulator and obstacles based on cylinder and sphere bounding box is established, and an improved RRT* algorithm based on heuristic probability fusion artificial potential field method(P-artificial potential field RRT*, PAPF-RRT*) is proposed. The probability target bias and random sampling point optimization strategy are introduced into the sampling, and the location optimization constraints are applied to the sampling points to enhance the sampling guidance and quality. In order to change the expansion direction of the traditional new node and the local optimization problem in special environment, the target gravity, obstacle repulsion and adaptive step size of the artificial potential field method are combined, so that the algorithm can guide the expansion direction and step size of the new node in real time within the resultant force range generated by APF, reducing excessive exploration and the expansion of the collision region. The Cubic B-spline is used to interpolate and optimize the planned path to reduce the complexity of the path and improve the flexibility of the path. The simulation results in two-dimensional and three-dimensional multi scenes show that the present algorithm reduces the average path search time by 31.22% and shortens the path length by 17.32% comparing with the traditional RRT* algorithm. The visual simulation results show that the present algorithm can make the manipulator successfully avoid obstacles and run to the target point quickly and smoothly.
Key words:    manipulator motion planning    asymptotically optimal rapidly exploring random tree    rapidly exploring random tree algorithms    artificial potential field    cubic B-spline    adaptive step-size   
收稿日期: 2022-06-28     修回日期:
DOI: 10.1051/jnwpu/20234130500
基金项目: 国家自然科学基金联合基金(U2106218)资助
通讯作者: 张蕾(1981—),西安工程大学副教授,主要从事非线性鲁棒自适应控制及工业机器人高精度运动控制研究。e-mail:carol1208@163.com     Email:carol1208@163.com
作者简介: 宋勇(1995—),西安工程大学硕士研究生,主要从事机器人运动规划算法研究。
相关功能
PDF(4398KB) Free
打印本文
把本文推荐给朋友
作者相关文章
宋勇  在本刊中的所有文章
张蕾  在本刊中的所有文章
田荣  在本刊中的所有文章
王晓华  在本刊中的所有文章

参考文献:
[1] FANG H C, ONG S K, NEE A Y C. Robot path planning optimization for welding complex joints[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9):3829-3839
[2] WANG W R, ZHU M C, WANG X M, et al. An improved artificial potential field method of trajectory planning and obstacle avoidance for redundant manipulators[J]. International Journal of Advanced Robotic Systems, 2018, 15(5):1-13
[3] LUO Q, WANG H, ZHENG Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications, 2020, 32(6):1555-1566
[4] NAZARAHARI M, KHANMIZRA E, DOOSTIE S. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert Systems with Applications, 2019, 115:106-120
[5] WANG S K, ZHU L. Motion planning method for obstacle avoidance of 6-dof manipulator based on improved A* algorithm[J]. Journal of Donghua University, 2015, 32(1):79-85
[6] AKRAM M, HABIB A, ALCANTUD J C R. An optimization study based on Dijkstra algorithm for a network with trapezoidal picture fuzzy numbers[J]. Neural Computing and Applications, 2021, 33(4):1329-1342
[7] WANG X, LUO X, HAN B, et al. Collision-free path planning method for robots based on an improved rapidly-exploring random tree algorithm[J]. Applied Sciences, 2020, 10(4):1381
[8] WANG J, LI B, MENG Q H. Kinematic constrained bi-directional RRT with efficient branch pruning for robot path planning[J]. Expert Systems with Applications, 2020,170:114541-114547
[9] TAHIR Z, QURESHI A H, AYAZ Y, et al. Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered environments[J]. Robotics and Autonomous Systems, 2018, 108:13-27
[10] 陈满意, 张桥, 张弓, 等. 多障碍环境下机械臂避障路径规划[J]. 计算机集成制造系统, 2021, 27(4):990-998 CHEN Manyi, ZHANG Qiao, ZHANG Gong, et al. Research on obstacle avoidance path planning of manipulator in multiple obstacles environmen[J]. Computer Integrated Manufacturing Systems, 2021,27(4):990-998(in Chinese)
[11] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. International Journal of Robotics Research, 2011, 30(7):846-894
[12] 张伟民, 付仕雄. 基于改进RRT*算法的移动机器人路径规划[J]. 华中科技大学学报, 2021, 49(1):31-36 ZHANG Weimin, FU Shixiong. Mobile robot path planning based on improved RRT* algorithm[J]. Journal Huazhong University of Science and Technology, 2021, 49(1):31-36(in Chinese)
[13] 张立彬, 林后凯, 谭大鹏. 基于栅格空间的自适应GB-RRT机械臂路径规划[J]. 计算机集成制造系统, 2022, 28(6):1638-1649 ZHANG Libin, LIN Houkai, TAN Dapeng, Manipulator path planning based on grid space-based adaptive goal bias rapidly exploring random tree star[J]. Computer Integrated Manufacturing Systems, 2022, 28(6):1638-1649(in Chinese)
[14] 李文广, 孙世宇, 李建增, 等. 分段优化RRT的无人机动态航迹规划算法[J]. 系统工程与电子技术, 2018, 40(8):123-130 LI Wenguang, SUN Shiyu, LI Jianzeng, et al. UAV dynamic path planning algorithm based on segmentated optimization RRT[J]. Systems Engineering and Electronics, 2018, 40(8):123-130(in Chinese)
[15] KANG J G, LIM D W, CHOI Y S, et al. Improved RRT-connect algorithm based on triangular inequality for robot path planning[J]. Sensors, 2021, 21(2):333
[16] WANG X Y, LI X J, GUAN Y, et al. Bidirectional potential guided RRT* for motion planning[J]. IEEE Access, 2019(99):1
[17] KALISIAK M, VAN DE PANNE M. RRT-blossom:RRT with a local flood-fill behavior[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006:1237-1242
[18] 朱战霞, 靖飒, 仲剑飞,等. 基于碰撞检测的空间冗余机械臂避障路径规划[J]. 西北工业大学学报, 2020, 38(1):183-190 ZHU Zhanxia, JING Sa, ZHONG Jianfei, et al. Obstacle avoidance path planning of space redundant manipulator based on a collision detection algorithm[J]. Journal of Northwestern Polytechnical University, 2020,38(1):183-190(in Chinese)
[19] 马宇豪, 梁雁冰. 一种基于六次多项式轨迹规划的机械臂避障算法[J]. 西北工业大学学报, 2020,38(2):392-400 MA Yuhao, LIANG Yanbing. An obstacle avoidance algorithm for manipulators based on six-order polynomial trajectory planning[J]. Journal of Northwestern Polytechnical University, 2020,38(2):392-400(in Chinese)
[20] 李洋, 徐达. 基于引力自适应步长RRT的双臂机器人协同路径规划[J]. 机器人, 2020, 42(5):606-616 LI Yang, XU Da. Cooperative path planning of dual-arm robot based on attractive force self-dadptive step size RRT[J]. Robot, 2020, 42(5):606-616(in Chinese)
[21] 代伟, 李创业, 杨春雨, 等. 基于低差异序列与快速扩展随机树融合算法的机械臂路径规划[J]. 控制理论与应用, 2022, 39(1):130-144 DAI Wei, LI Chuangye, YANG Chunyu, et al. Manipulator path planning using fusion algorithm of low difference sequence and rapidly exploring random tree[J]. Contrd Theory & Applications, 2022, 39(1):130-144(in Chinese)