论文:2023,Vol:41,Issue(3):447-454
引用本文:
李永志, 贺尔铭, 陈鹏翔, 尹梦晗. 考虑残余应力的高低温循环下灌封模块开裂机理分析及试验验证[J]. 西北工业大学学报
LI Yongzhi, HE Erming, CHEN Pengxiang, YIN Menghan. Cracking mechanism analysis and experimental verification of encapsulated module under high low temperature cycle considering residual stress[J]. Journal of Northwestern Polytechnical University

考虑残余应力的高低温循环下灌封模块开裂机理分析及试验验证
李永志1, 贺尔铭1, 陈鹏翔2, 尹梦晗1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西安航天动力研究所, 陕西 西安 710100
摘要:
针对改性环氧树脂灌封模块在高低温循环下因界面失效而导致的开裂破坏问题,开展了数值模拟与试验研究。采用钻孔法测试环氧树脂灌封固化的残余应力,重构灌封模块内的残余应力场;试验测试高低温环境下改性环氧树脂等灌封模块组件材料的力热特性参数,建立与温度相关的材料模型;建立考虑残余应力和温度效应的含多组件、多界面、复杂接触的高还原度灌封模块有限元模型,采用内聚力模型来模拟树脂-预埋件界面的失效行为;对高低温循环下灌封模块的应力应变进行仿真,并分析其分布特征和开裂破坏机理。结果表明:无论升温/降温过程,由于灌封树脂与预埋件热膨胀系数不匹配,二者间热应变差值均较大;当温度接近玻璃化转变温度Tg时差值急剧扩大,由此产生的热应力叠加残余应力共同引发了灌封模块的界面失效;仿真分析结果与灌封模块高低温循环试验结果吻合良好,验证了分析方法和有限元模型的有效性。研究结果对于灌封模块高可靠性设计具有一定的参考价值。
关键词:    灌封结构    残余应力    高低温循环    开裂机理   
Cracking mechanism analysis and experimental verification of encapsulated module under high low temperature cycle considering residual stress
LI Yongzhi1, HE Erming1, CHEN Pengxiang2, YIN Menghan1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Abstract:
Aiming at the cracking failure of the modified epoxy resin encapsulated module as a result of interface failure under high low temperature cycles, numerical simulation and experimental studies were carried out. Firstly, the residual stress field in the encapsulated module was reconstructed after measuring the curing residual stresses in epoxy resin using the hole-drilling method. Temperature-dependent material models were developed after testing the mechanical and thermal characteristic parameters of encapsulated module components, such as modified epoxy resin, in high and low temperature conditions. Then, a finite element model of a high-reduction encapsulated module with multiple components, multiple interfaces, and complicated contacts was established considering residual stress and temperature effects. To simulate the failure behaviour of the resin-embedded part interfaces, the cohesive zone model was utilized. Finally, the stress and strain of the encapsulated module under high and low temperature cycles were simulated, and their distribution features and cracking failure mechanism were analyzed. The results indicate that regardless of the heating/cooling process, significant due to a mismatch in thermal expansion coefficients between the resin and the embedded parts. As the temperature approaches the glass transition temperature Tg, the difference grows dramatically. The resulting thermal stress, together with the residual stress, led to the interface failure in encapsulated module. The numerical results were in good agreement with the high and low temperature cycle test results of the encapsulated module, which verified the effectiveness of the analysis method and the established finite element model. The investigation provides an important reference for the high-reliability design of the encapsulation module.
Key words:    encapsulation structure    residual stress    high low temperature cycle    cracking mechanism   
收稿日期: 2022-07-28     修回日期:
DOI: 10.1051/jnwpu/20234130447
通讯作者: 贺尔铭(1964—),西北工业大学教授,主要从事飞机结构动力学与振动控制研究。e-mail:heerming@nwpu.edu.cn     Email:heerming@nwpu.edu.cn
作者简介: 李永志(1996—),西北工业大学博士研究生,主要从事复合材料热力耦合分析方法研究。
相关功能
PDF(4337KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李永志  在本刊中的所有文章
贺尔铭  在本刊中的所有文章
陈鹏翔  在本刊中的所有文章
尹梦晗  在本刊中的所有文章

参考文献:
[1] 宋冬. 航天产品整机的防振加固工艺[J]. 电子工艺技术, 2013, 34(1):29-33 SONG Dong. Anti-vibration reinforcement of final assembly for aerospace product[J]. Electronics Process Technology, 2013, 34(1):29-33(in Chinese)
[2] WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(4):522-529
[3] ASTM International. Standard test method for determining residual stresses by the hole-drilling strain-gage method[S]. ASTM E837-13a, 2013
[4] IBRAHIM MAMANE A S, GILJEAN S, PAC M J, et al. Optimization of the measurement of residual stresses by the incremental hole drilling method. Part I:numerical correction of experimental errors by a configurable numerical-experimental coupling[J]. Composite Structures, 2022, 294:115703
[5] LEOS A, VASYLEVSKYI K, TSUKROV I, et al. Evaluation of process-induced residual stresses in orthogonal 3D woven composites via nonlinear finite element modeling validated by hole drilling experiments[J]. Composite Structures, 2022, 297:115987
[6] HILLERBORG A, MODEER M, PETERSSON P, et al. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6):773-782
[7] CAMANHO P P, HALLETT S R. Numerical modelling of failure in advanced composite materials[M]. Cambridge:Cambridge Woodhead Publishing Ltd., 2015
[8] MOHAMMAD H R, MOUSA S. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches[J]. Theoretical and Applied Fracture Mechanics, 2019, 103:102246
[9] ELICES M, GUINEA G V, GÓMEZ J, et al. The cohesive zone model:advantages, limitations and challenges[J]. Engineering Fracture Mechanics, 2002, 69(2):137-163
[10] REN Huaihui, WANG Xishu, JIA Su. Fracture analysis on die attach adhesives for stacked packages based on in-situ testing and cohesive zone model[J]. Microelectronics Reliability, 2013, 53(7):1021-1028
[11] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法[S]. GB/T 2567-2021, 2021 Standardization Administration of China. Test methods for properties of resin casting body[S]. GB/T2567-2021, 2021(in Chinese)
[12] MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14):1246-1272
[13] JI Ruixue, ZHAO Libin, WANG Kangkang, et al. Effects of debonding defects on the postbuckling and failure behaviors of composite stiffened panel under uniaxial compression[J]. Composite Structures, 2021, 256:113121
[14] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4):439-449