论文:2023,Vol:41,Issue(2):344-353
引用本文:
于广伟, 闫莉. 基于多尺度迁移符号动力学熵和支持向量机的轴承诊断方法研究[J]. 西北工业大学学报
YU Guangwei, YAN Li. A novel bearing fault diagnosis method based on multi-scale transfer symbolic dynamic entropy and support vector machine[J]. Journal of Northwestern Polytechnical University

基于多尺度迁移符号动力学熵和支持向量机的轴承诊断方法研究
于广伟, 闫莉
西安工业大学 机电工程学院, 陕西 西安 710021
摘要:
针对传统数据驱动故障诊断模型在机械系统诊断中存在的泛化能力下降甚至失效的问题,应用迁移学习的思想,提出了基于多尺度迁移符号动力学熵和支持向量机的故障识别算法。采用多尺度符号动力学熵提取故障特征,在此基础上提出基于迁移学习的特征映射技术,使非同分布数据的特征在映射后分布差异减小。对多尺度迁移符号动力学熵方法的参数进行优选,将其输入支持向量机中,进一步提高最终的故障识别率。通过轴承故障实验信号的测试证明,基于多尺度迁移符号动力学熵的滚动轴承诊断方法能够有效提升数据驱动故障诊断模型的泛化能力,实现少量样本下滚动轴承不同故障位置的准确识别。
关键词:    多尺度迁移符号动力学熵    特征提取    迁移学习    故障诊断    滚动轴承   
A novel bearing fault diagnosis method based on multi-scale transfer symbolic dynamic entropy and support vector machine
YU Guangwei, YAN Li
School of Mechatronic Engineering, Xi'an Technological University, Xi'an 710021, China
Abstract:
In view of the problem that the generalization ability of traditional data-driven fault diagnosis model declines or even fails in mechanical system diagnosis, a fault diagnosis method based on multi-scale transfer symbolic dynamic entropy and support vector machine is proposed based on the idea of transfer learning. Firstly, multi-scale symbolic dynamic entropy is used to extract fault features from measured vibration signals. And then a feature projection technique based on transfer learning is proposed, which reduces the data distribution difference. Secondly, the parameters of the multi-scale transfer symbol dynamic entropy method are optimized to improve the final fault identification rate. Then, the support vector machine can implement the fault identification. Finally, through the test of bearing fault experimental signals, the rolling bearing diagnosis method based on multi-scale transfer symbol dynamic entropy can effectively improve the generalization ability of data-driven model and realize accurate identification of different fault types of rolling bearing under a small number of samples.
Key words:    symbolic dynamic entropy    feature extraction    transfer learning    rolling bearing    fault diagnosis   
收稿日期: 2021-10-27     修回日期:
DOI: 10.1051/jnwpu/20234120344
通讯作者: 闫莉(1974-),西安工业大学教授,主要从事精益生产、系统工程研究。e-mail:yanli@xatu.edu.cn     Email:yanli@xatu.edu.cn
作者简介: 于广伟(1980-),西安工业大学讲师,主要从事精益生产、系统工程研究。
相关功能
PDF(3407KB) Free
打印本文
把本文推荐给朋友
作者相关文章
于广伟  在本刊中的所有文章
闫莉  在本刊中的所有文章

参考文献:
[1] LIU H, LIU C, HUANG Y. Adaptive feature extraction using sparse coding for machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25:558-574
[2] LI Y, WANG X, LIU Z, et al. The entropy algorithm and its variants in the fault diagnosis of rotating machinery:a review[J]. IEEE Access, 2018, 6:66723-66741
[3] LI Y, LIU F, WANG S. Multi-scale symbolic lempel-ziv:an effective feature extraction approach for fault diagnosis of railway vehicle systems[J]. IEEE Trans on Industrial Informatics, 2021, 17:199-208
[4] YANG C, JIA M. Hierarchical multiscale permutation entropy-based feature extraction and fuzzy support tensor machine with pinball loss for bearing fault identification[J]. Mechanical Systems and Signal Processing, 2021, 149:107182
[5] WEI Y, LI Y, XU M, et al. A review of early fault diagnosis approaches and their applications in rotating machinery[J]. Entropy, 2019, 21(4):409
[6] KOLMOGOROV A N. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces[J]. Doklady Akademii nauk SSSR, 1958, 119:861-864
[7] PINCUS S. Approximate entropy(ApEn) as a complexity measure[J]. Chaos, 1995, 5(1):110-117
[8] RICHMAN J, MOORMAN J. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278:H2039-49
[9] CHEN W, ZHUANG J, YU W, et al. Measuring complexity using FuzzyEn, ApEn, and SampEn[J]. Medical Engineering & Physics, 2009, 31(1):61-68
[10] CHRISTOPH B. Permutation entropy:a natural complexity measure for time series[J]. Physical Review Letters, 2002, 17(88):174102
[11] LI Y, YANG Y, LI G, et al. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection[J]. Mechanical Systems and Signal Processing, 2017, 91:295-312
[12] COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2007, 89:068102
[13] PAN S J, KWOK J T, YANG Q. Transfer learning via dimensionality reduction[C]//Proceedings of the 23rd National Conference on Artificial Intelligence, Chicago, Illinois, 2008
[14] QUANZ B, HUAN J. Large margin transductive transfer learning[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, 2009
[15] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Trans on Neural Networks, 2011, 22(2):199-210
[16] ZHENG H, WANG R, YIN J, et al. A new intelligent fault identification method based on transfer locality preserving projection for actual diagnosis scenario of rotating machinery[J]. Mechanical Systems and Signal Processing, 2020, 135:106344
[17] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Trans on Knowledge and Data Engineering, 2010, 22(10):1345-1359
[18] PHM Society. PHM 09 Data Challenge Data[EB/OL].(2009-04-10)[2021-09-25]. https://www.phmsociety.org/data-analysis-competition/
[19] CASE Western Reserve University. Case western reserve university rolling bearing dataset[EB/OL].(2021-08-05)[2021-09-25]. https://csegroups.case.edu/bearingdatacenter/pages/12k-drive-end-bearing-fault-data
[20] Society for Machinery Failure Prevention Technology. Eric Bechhoefer, MFPT bearing fault data sets[EB/OL].(2021-02-27)[2021-09-25]. https://mfpt.org/fault-data-sets/
[21] GONG B, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012
[22] LU W, LIANG B, CHENG Y, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Trans on Industrial Electronics, 2016, 64(3):2296-2305
[23] ZHAO J, MENG D. Fastmmd:ensemble of circular discrepancy for efficient two-sample test[J]. Neural Computation, 2015, 27(6):1345-1372
[24] LONG M, WANG J, DING G, et al. Adaptation regularization:a general framework for transfer learning[J]. IEEE Trans on Knowledge and Data Engineering, 2013, 26(5):1076-1089
[25] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2609