论文:2023,Vol:41,Issue(2):329-337
引用本文:
张永红, 唐双全, 王淼, 王成民, 葛文杰. 一种适用于变弯度机翼后缘的蒙皮设计方法[J]. 西北工业大学学报
ZHANG Yonghong, TANG Shuangquan, WANG Miao, WANG Chengmin, GE Wenjie. A skin design method of variable camber wing trailing edge[J]. Journal of Northwestern Polytechnical University

一种适用于变弯度机翼后缘的蒙皮设计方法
张永红, 唐双全, 王淼, 王成民, 葛文杰
西北工业大学 机电学院, 陕西 西安 710072
摘要:
蒙皮作为机翼的重要组成部分,其形变精度直接影响飞机在不同环境的气动性能。基于便于加工和易于形变的思想,提出了一种用于变弯度机翼后缘的变截面厚度蒙皮设计方法。利用所提方法优化设计了3~8段机翼后缘上、下缘蒙皮的各段厚度和长度,对不同分段蒙皮的变形结果进行了对比分析,通过叠层蒙皮实验验证了设计结果的正确性及所提方法的有效性。
关键词:    变弯度机翼后缘    变截面厚度蒙皮    上、下缘蒙皮曲率   
A skin design method of variable camber wing trailing edge
ZHANG Yonghong, TANG Shuangquan, WANG Miao, WANG Chengmin, GE Wenjie
School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
As an important part of the wing, the skin deformation accuracy directly affect the aerodynamic performance of the aircraft in different environments. Based on the idea of easy processing and easy deformation, a method for designing variable section thickness skin for trailing edge of variable camber wings is proposed. In this paper, firstly, the thickness and length of each segment of 3~8 segments of trailing edge skin are optimized. Then the deformation results of different segments of skin are compared and analyzed. Finally, the correctness of the design results and the effectiveness of the method are verified by using stacked skin experiment.
Key words:    variable camber wing trailing edge    variable section thickness skin    upper and lower edge skin curvature   
收稿日期: 2022-06-30     修回日期:
DOI: 10.1051/jnwpu/20234120329
基金项目: 国家自然科学基金(51375383)资助
通讯作者: 葛文杰(1956-),西北工业大学教授,主要从事仿生跳跃机器人及柔性机翼拓扑优化研究。e-mail:gwj@nwpu.edu.cn     Email:gwj@nwpu.edu.cn
作者简介: 张永红(1971-),西北工业大学副教授,主要从事机构拓扑优化、柔性机构设计及机构学研究。
相关功能
PDF(4774KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张永红  在本刊中的所有文章
唐双全  在本刊中的所有文章
王淼  在本刊中的所有文章
王成民  在本刊中的所有文章
葛文杰  在本刊中的所有文章

参考文献:
[1] YOKOZEKI T, TAKEDA S, OGASWARA T, et al. Mechanical properties of corrugated composites for candidate materials of flexible wing structures[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(10):1578-1586
[2] BAI J B, CHEN D, XIONG J J, et al. A corrugated flexible composite skin for morphing applications[J]. Composites Part B Engineering, 2017, 131:134-143
[3] ZHAO J T, WANG B F, MOU C W, et al. Research on tensile deformation and strain of composite corrugated skin[J]. China Mechanical Engineering, 2010, 21(16):1959-1962
[4] MOU C W, WANG B F, GE R J, et al. Basal body preparation and drive characteristic of corrugated skin with the active deformability[J]. Ordnance Material Science and Engineering, 2010, 32(2):11-14
[5] OLYMPIO K R, GANDHI F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material Systems & Structures, 2010, 21(17):1719-1735
[6] BUBERT E A, WOODS B, LEE K, et al. Design and fabrication of a passive 1D morphing mircraft skin[J]. Journal of Intelligent Material Systems & Structures, 2010, 21(17):1699-1717
[7] 宫晓博. 基于变刚度蒙皮和零泊松比蜂窝的变弯度机翼结构研究[D]. 哈尔滨:哈尔滨工业大学, 2017 GONG Xiaobo. Research on variable camber wing structure based on variable stiffness skin and zero Poisson's ratio honeycomb[D]. Harbin:Harbin Institute of Technology, 2017 (in Chinese)
[8] KUDVA J N, SANDERS B P, PINKERTON-FLORANCE J L, et al. Overview of the DARPA/AFRL/NASA smart wing phase II program[C]//Smart Structures and Materials 2001:Industrial and Commercial Applications of Smart Structures Technologies, 2001:383-389
[9] SUN J, GONG X, LIU Y, et al. Variable camber wing based on shape memory polymer skin[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013:1919
[10] CHEN S B, CHEN Y J, ZHANG Z C, et al. Experiment and analysis of morphing skin embedded with shape memory polymer composite tube[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(16):2052-2059
[11] MURRAY G, GANDHI F, BAKIS C. Flexible matrix composite skins for one-dimensional wing morphing[J]. Journal of Intelligent Material Systems & Structures, 2010, 21(17):1771-1781
[12] TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. The London, Edinburgh, and Dusblin Philosophical Magazine and Journal of Science, 1921, 41(245):744-746
[13] 张宏智. 分段式变弯度机翼后缘拓扑优化设计[D]. 西安:西北工业大学,2021 ZHANG Hongzhi. Topological optimization design of trailing edge of segmented variable camber wing[D]. Xi'an:Northwestern Polytechnical University, 2021 (in Chinese)