论文:2023,Vol:41,Issue(2):319-328
引用本文:
卢蕊, 丁永乐, 余培汛, 谭坤, 潘光. 基于CFD/CAA耦合边界方法的翼型尾缘噪声预测[J]. 西北工业大学学报
LU Rui, DING Yongle, YU Peixun, TAN Kun, PAN Guang. Airfoil trailing-edge noise prediction based on CFD/CAA coupled boundary method[J]. Journal of Northwestern Polytechnical University

基于CFD/CAA耦合边界方法的翼型尾缘噪声预测
卢蕊1, 丁永乐2, 余培汛3, 谭坤2, 潘光1
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西安精密机械研究所, 陕西 西安 710077;
3. 西北工业大学 航空学院, 陕西 西安 710072
摘要:
基于声波边界条件的流致噪声混合预测方法是一种处理复杂构型声学问题的数值手段。该方法可进行声源的精细化模拟,准确获得噪声的传播特性。发展了声扰动方程离散求解中所涉及的时空离散格式及边界条件等数值方法,提出通过添加缓冲层等策略以改善声源区与传播区交界处数值间断引起的发散问题,以建立高精度流致噪声混合预测方法。为了研究混合方法的准确性,以BANC试验中的NACA0012翼型为研究对象,开展了翼型尾缘的声辐射数值模拟研究分析。通过与大涡模拟方法所求解的声场结果进行对比,验证了基于声波边界条件的高精度流致噪声混合预测方法可准确预测空间声场分布,并直观反映声波与声波之间的相互作用现象。与大涡模拟结果相比,CFD/CAA方法总声压级误差不超过2 dB,噪声指向性分布趋势一致。
关键词:    声波边界条件    流致噪声    大涡模拟    等效声源法    翼型尾缘噪声   
Airfoil trailing-edge noise prediction based on CFD/CAA coupled boundary method
LU Rui1, DING Yongle2, YU Peixun3, TAN Kun2, PAN Guang1
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an Precision Machinery Researh Institute, Xi'an 710077, China;
3. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Flow-induced noise hybrid prediction method based on sound wave boundary condition is an effective numerical method to deal with a flow-induced noise problems of complex configuration. This method can not only finely simulate the sound source, but also analyze the noise propagation characteristics. In this paper, numerical methods such as space-time discrete scheme and boundary conditions involved in discrete solution of acoustic perturbation equations(APE) are developed, and strategies such as adding buffer layer are proposed to improve divergence caused by numerical discontinuity at the junction of sound source region and propagation region, so as to establish a high-precision flow-induced noise hybrid method. In order to study the rationality of flow-induced noise hybrid method, the numerical simulation of acoustic radiation at the trailing edge of NACA0012 airfoil in BANC experiment was carried out. Compared with the results of sound field solved by large eddy simulation method, the analysis shows that the high-precision flow-induced noise hybrid method based on sound wave boundary conditions can predict the spatial sound field distribution with high precision and directly reflect the interaction between sound waves. Compared with the results of large eddy simulation, the error of sound pressure level is less than 2 dB, and the noise directional distribution trend is consistent.
Key words:    sound wave boundary condition    flow-induced noise    large eddy simulation    acoustic perturbation equations    trailing edge noise   
收稿日期: 2022-06-09     修回日期:
DOI: 10.1051/jnwpu/20234120319
基金项目: 国家自然科学基金(12002283)资助
通讯作者: 余培汛(1986-),西北工业大学副研究员,主要从事计算声学研究。e-mail:yupeixun@nwpu.edu.cn     Email:yupeixun@nwpu.edu.cn
作者简介: 卢蕊(1981-),西北工业大学博士研究生,主要从事水下航行器总体设计研究。
相关功能
PDF(4530KB) Free
打印本文
把本文推荐给朋友
作者相关文章
卢蕊  在本刊中的所有文章
丁永乐  在本刊中的所有文章
余培汛  在本刊中的所有文章
谭坤  在本刊中的所有文章
潘光  在本刊中的所有文章

参考文献:
[1] THOMAS N L, VINCENT F A, YVES D. CFD/CAA coupling strategies for rearward fan noise[R]. AIAA-2018-4089
[2] LABAN M, KOK J C, BROUWER H H. CFD/CAA analysis of UHBR engine tonal noise[R]. AIAA-2018-3780
[3] ANSGAR N, MATHIAS M, WOLFGANG S, et al. Noise reduction using a direct-hybrid CFD/CAA method[R]. AIAA- 2019-2579
[4] TERRACOL M, MANOHA E, HERRERO C, et al. Hybrid methods for airframe noise numerical prediction[J]. Theoretical and Computational Fluid Dynamics, 2005, 19(3):197-227
[5] BERNICKE P, AKKERMANS R A D. Overset LES for trailing-edge noise computations[R]. AIAA-2017-3170
[6] ZHANG Y F, CHEN H X. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation[J]. AIAA Journal, 2017, 55(12):4219-4233
[7] 魏佳云, 李伟鹏, 许思为, 等. 基于DMD方法的缝翼低频噪声机理分析[J]. 航空学报, 2018, 39(1):121469 WEI Jiayun, LI Weipeng, XU Siwei, et al. Analysis of mechanism of slat low frequency noise based on zonal DMD[J]. Acta Aeronautica er Astronautica Sinica, 2018, 39(1):121469 (in Chinese)
[8] YAO H D, DAVIDSON L. Assessment of conceptual noise reduction devices for a main landing gear using SNGR method[R]. AIAA-2015-2692
[9] 余培汛, 潘凯, 白俊强, 等. 快速随机粒子网格法的气动噪声预测方法[J]. 声学学报, 2018, 12(5):817-828 YU Peixun, PAN Kai, BAI Junqiang, et al. Computational aero-acoustics prediction method based on fast random particle mesh[J]. Acta Acustica, 2018, 12(5):817-828 (in Chinese)
[10] HAN X, YU P X, BAI J Q, et al. Hybrid computational aeroacoustics approach based on the synthetic turbulence model in eulerian description[J]. Aerospace Science and Technology, 2020, 106:106077
[11] 陈荣钱, 伍贻兆, 夏健. 基于SNGR方法的二维空腔噪声数值模拟[J]. 南京航空航天大学学报, 2012, 41(1):56-60 CHEN Rongqian, WU Yizhao, XIA Jian. Numerical simulation of two-dimensional cavity noise by SNGR method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 41(1):56-60 (in Chinese)
[12] 吕宏强, 朱国祥, 宋江勇, 等. 线化欧拉方程的高阶间断有限元数值解法研究[J]. 力学学报, 2011, 43(3):611-624 LYU Hongqiang, ZHU Guoxiang, SONG Jiangyong, et al. High-order discontinuous galerkin solution of linearized Euler equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3):611-624 (in Chinese)
[13] EWERT R, DIERKE J, NEIFELD A. Linear and non-linear perturbation equations with relaxation source terms for forced eddy simulation of aeroacoustic sound generation[R]. AIAA-2014-3053
[14] GAO J H, LI X D. Improved grid block interface flux reconstruction method for high-order finite difference scheme[J]. AIAA Journal, 2005, 53(7):1761-1773
[15] YU P X, BAI J Q, PAN K. Interface flux reconstruction method based on optimized weight essentially non-oscillatory scheme[J]. Chinese Journal of Aeronautics, 2018, 31(5):1020-1029
[16] OVAIS U K, GHULAM A. Simulation of acoustic radiations over an open cavity using high-resolution numerical scheme[R]. AIAA-2020-1750
[17] TERRACOL M, MANOHA E, HERRERO C, et al. Hybrid methods for airframe noise numerical prediction[J]. Theoretical and Computational Fluid Dynamics, 2005, 19:197-227
[18] VASANTH A, RAY H. High-accuracy large-step explicit Runge-Kutta(HALE-RK) schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2009, 228:3837-3850
[19] HU F Q, HUSSAIN M Y. Low dissipation and dispersion Runge-Kutta schemes for computation acoustics[J]. Journal of Computational Physics, 1996, 124(1):177-191
[20] TAM C K W, AURIAULT L. Perfectly matched layer as absorbing boundary condition for the linearized euler equations in open and ducted domains[R]. AIAA-2001-0217
[21] SEONGKYU L, JESSICA G S. Prediction of airfoil trailing-edge noise using empirical wall-pressure spectrum models[J]. AIAA Journal, 2019, 57(3):888-897
[22] BROOK P. Fourth computational aeroacoustics(CAA) workshop on benchmark problems[R]. NASA/CP-2004-212954