论文:2023,Vol:41,Issue(2):241-252
引用本文:
张煜, 白俊强, 屈峰. 考虑阻力发散约束的机翼气动/结构多点优化设计[J]. 西北工业大学学报
ZHANG Yu, BAI Junqiang, QU Feng. Multi-point aero-structural design optimization of wings considering drag-divergence constraints[J]. Journal of Northwestern Polytechnical University

考虑阻力发散约束的机翼气动/结构多点优化设计
张煜1, 白俊强1,2, 屈峰1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人系统技术研究院, 陕西 西安 710072
摘要:
以阻力发散性能为约束,使用基于离散伴随的梯度类优化设计方法对某远程宽体客机机翼/机身/平垂尾/发动机构型进行了气动/结构的机翼多点精细化设计。使用DLR-F6翼身组合体构型对建立的气动/结构耦合数值求解方法进行了验证。对某远程宽体客机构型进行了气动/结构机翼优化设计。优化结果各设计状态的阻力系数均有所减小,巡航状态阻力系数减小13.67 counts,Ma为0.87的设计状态较Ma为0.85的设计状态阻力系数差量由28.52 counts减至18.98 counts,阻力发散性能得到明显改善。将气动/结构多点优化结果与气动学科巡航单点优化结果和结构学科巡航单点优化结果进行了对比。结果表明:相较于单学科单点设计问题,考虑阻力发散特性的气动/结构多点优化设计可以充分挖掘构型设计潜力,得到综合性能更好、工程实用性更强的设计结果。
关键词:    大型民用客机    阻力发散    气动/结构优化设计    离散伴随方法    梯度优化   
Multi-point aero-structural design optimization of wings considering drag-divergence constraints
ZHANG Yu1, BAI Junqiang1,2, QU Feng1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Considering the drag-divergence performance as a constraint, this paper presents a multi-point aero-structural design optimization of wings on a wing-body-tail-engine configuration of long-range dual-aisle civil aircraft by using a gradient-based method based on the discrete adjoint method. Firstly, the accuracy of the coupled aero-structural analysis method used in this paper was validated with DLR-F6 wing-body configuration. Then a wing aero-structural design optimization based on a dual-aisle civil aircraft is offered. The drag coefficient of the optimized configuration in every state decreased, which was reduced by 13.67 counts at the cruise condition, the difference in drag coefficient from Mach 0.85 to Mach 0.87 was decreased from 28.52 counts to 18.98 counts, indicating its drag-divergence performance has been improved undoubtedly. Finally, we compared the performance among the multi-point aero-structural optimized configuration, the single-point aerodynamic optimized configuration and the single-point structural optimized configuration. The results show that the multi-point aero-structural design optimization considering drag-divergence performance has great potential to gain a design configuration with better comprehensive and practical performance compared with a single-point optimization in a single discipline.
Key words:    large civil aircraft    drag-divergence    aero-structural design optimization    discrete adjoint method    gradient-based optimization   
收稿日期: 2022-04-04     修回日期:
DOI: 10.1051/jnwpu/20234120241
基金项目: 国家自然科学基金(11972308,11902265)资助
通讯作者: 白俊强(1970-),西北工业大学教授,主要从事飞行器设计、计算流体力学及飞机综合应用研究。e-mail:junqiang@nwpu.edu.cn     Email:junqiang@nwpu.edu.cn
作者简介: 张煜(1993-),西北工业大学博士研究生,主要从事飞行器气动外形优化设计及多学科优化设计研究。
相关功能
PDF(6256KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张煜  在本刊中的所有文章
白俊强  在本刊中的所有文章
屈峰  在本刊中的所有文章

参考文献:
[1] VASSBERG J, DEHAAN M, RIVERS M, et al. Development of a common research model for applied CFD validation studies[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008
[2] KENWAY G K W, MARTINS J R R A. Multipoint aerodynamic shape optimization investigations of the common research model wing[J]. AIAA Journal, 2016, 54(1):113-128
[3] TAO J, SUN G, WANG X Y, et al. Robust optimization for a wing at drag divergence Mach number based on an improved PSO algorithm[J]. Aerospace Science and Technology, 2019, 92:653-667
[4] 陈迎春,张美红,张淼,等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):35-51 CHEN Yingchun, ZHANG Meihong, ZHANG Miao, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):35-51 (in Chinese)
[5] 韩忠华,张瑜,许晨舟,等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1):155-170 HAN Zhonghua, ZHANG Yu, XU Chenzhou, et al. Aerodynamic shape optimization of large transport aircraft wings using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):155-170 (in Chinese)
[6] 薛帮猛,张文升,孙学卫,等. 动力干扰下宽体客机机翼多目标优化设计[J]. 航空学报, 2019, 40(2):63-73 XUE Bangmeng, ZHANG Wensheng, SUN Xuewei, et al. Multi-objective wing shape optimization for a wide-body civil aircraft in wing-body-pylon-powered nacelle configuration[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):63-73 (in Chinese)
[7] 黄江涛,高正红,余婧,等. 大型民用飞机气动外形典型综合设计方法[J]. 航空学报, 2019, 40(2):52-62 HUANG Jiangtao, GAO Zhenghong, YU Jing, et al. A typical integrated design method for aerodynamic shape optimization of large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):52-62 (in Chinese)
[8] 雷锐午,白俊强,许丹阳,等. 基于耦合伴随方法的串/并行气动结构优化设计对比[J]. 航空动力学报, 2019, 34(5):1036-1049 LEI Ruiwu, BAI Junqiang, XU Danyang, et al. Speciality assessment of sequential and concurrent aerostructural optimization based on coupled adjoint technique[J]. Journal of Aerospace Power, 2019, 34(5):1036-1049 (in Chinese)
[9] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260
[10] ALONSO J, LEGRESLEY P, VAN DER WEIDE E, et al. pyMDO:a framework for high-fidelity multi-disciplinary optimization[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, 2004
[11] MARTINS J R R A, ALONSO J J, REUTHER J J. High-fidelity aerostructural design optimization of a supersonic business jet[J]. Journal of Aircraft, 2004, 41(3):523-530
[12] 白俊强,雷锐午,杨体浩,等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报, 2019, 40(1):103-120 BAI Junqiang, LEI Ruiwu, YANG Tihao, et al. The recent progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):103-120 (in Chinese)
[13] MADER C A, KENWAY G K W, YILDIRIM A, et al. ADflow:an open-source computational fluid dynamics solver for aerodynamic and multidisciplinary optimization[J]. Journal of Aerospace Information Systems, 2020, 17(9):508-527
[14] KENNEDY G J K, MARTINS J R R A. A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures[J]. Finite Elements in Analysis & Design, 2014, 87:56-73
[15] 刘艳,白俊强,华俊,等. 基于RBF插值技术的CFD/CSD非线性耦合分析方法研究[J]. 计算力学学报, 2014, 31(1):120-127 LIU Yan, BAI Junqiang, HUA Jun, et al. A approach to CFD/CSD non-linear coupling based on RBF interpolation technology[J]. Chinese Journal of Computational Mechanics, 2014, 31(1):120-127 (in Chinese)
[16] 张兵,韩景龙. 带旋转修正的弹簧-TFI混合动网格方法[J]. 航空学报, 2011, 32(10):1815-1823 ZHANG Bing, HAN Jinglong. Spring-TFI hybrid dynamic mesh method with rotation correction[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1815-1823 (in Chinese)
[17] LAFLIN K R, BRODERSEN O, RAKOWITZ M, et al. Summary of data from the second AIAA CFD drag prediction workshop(Invited)[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004
[18] KEYE S, RUDNIK R. Aero-elastic simulation of DLR's F6 transport aircraft configuration and comparison to experimental data[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009
[19] BURNER A, GOAD W, MASSEY E, et al. Wing deformation measurements of the DLR-F6 transport configuration in the national transonic facility(Invited)[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008
[20] 何小龙, 白俊强, 李立, 等. 飞行器圆柱类部件的气动外形参数化方法[J]. 西北工业大学学报, 2018, 36(6):1027-1036 HE Xiaolong, BAI Junqiang, LI Li, et al. CYFFD parameterization method for cylindrical components of aircrafts[J]. Journal of Northwestern Polytechnical University, 2018, 36(6):1027-1036 (in Chinese)
[21] KRAFT D. A software packange for sequential quadratic programming[R]. Technical Report DFVLR-FB 88-28, 1988
[22] BOEING COMMERCIAL AIRPLANES. 787 airplane characteristics for airport planning[EB/OL]. (2018-03-01)[2021-09-15]. http://www.boeing.com/resources/boeingdotcom/commercial/airports/acaps/787.pdf
[23] KENWAY G K W, KENNEDY G J K, MARTINS J R R A. A scalable parallel approach for high-fidelity aerostructural analysis and optimization[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, 2012
[24] RASPANTI C G, BANDONI J A, BIEGLER L T. New strategies for flexibility analysis and design under uncertainty[J]. Computers & Chemical Engineering, 2000, 24(9/10):2193-2209