论文:2023,Vol:41,Issue(1):188-197
引用本文:
朱卫军, 庄舒青, 陈东阳, 曹九发, 付士凤, 孙振业. 摆式振荡翼塔筒尾涡潮流能捕获系统的水动力性能分析[J]. 西北工业大学学报
ZHU Weijun, ZHUANG Shuqing, CHEN Dongyang, CAO Jiufa, FU Shifeng, SUN Zhenye. Hydrodynamic performance analysis of tower wake vortex tidal current energy capture system with swing oscillating hydrofoil[J]. Journal of Northwestern Polytechnical University

摆式振荡翼塔筒尾涡潮流能捕获系统的水动力性能分析
朱卫军1,2, 庄舒青1, 陈东阳3, 曹九发1, 付士凤1, 孙振业1
1. 扬州大学 电气与能源动力工程学院, 江苏 扬州 225127;
2. 扬州大学 智慧能源互联网研究院, 江苏 扬州 225127;
3. 西北工业大学 航海学院, 陕西 西安 710072
摘要:
为实现对海上风电场中潮流能有效利用,提出一种将振荡水翼潮流能捕获装置与海上风力机水下塔筒结合的摆式振荡翼塔筒尾涡潮流能捕获系统。联合格子玻尔兹曼和大涡模拟方法,对NACA0015翼型在有无塔筒尾流效应时,不同运动参数对其水动力特性及能量收集效率的影响进行数值分析,并从水翼运动过程中的旋涡结构分析了俯仰振幅、升沉振幅及振荡翼弦长对系统捕能效率的影响。结果表明,塔筒尾涡显著提升振荡翼的能量收集效率,同时振荡翼的加入能减慢塔筒涡脱,降低由钝体绕流引起的疲劳载荷。摆式振荡翼在塔筒尾涡区域内的捕能效率最高可达30.72%,与传统振荡翼潮流能捕获装置相比具有明显优势,为提高海上风场整体能源利用率提供了一种有效的方式。
关键词:    潮流能    振荡水翼    格子玻尔兹曼方法    大涡模拟   
Hydrodynamic performance analysis of tower wake vortex tidal current energy capture system with swing oscillating hydrofoil
ZHU Weijun1,2, ZHUANG Shuqing1, CHEN Dongyang3, CAO Jiufa1, FU Shifeng1, SUN Zhenye1
1. College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225100, China;
2. Smart Energy Internet Research Institute, Yangzhou University, Yangzhou 225127, China;
3. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to effectively utilize the tidal current energy in offshore wind farms, a swing oscillating hydrofoil system for tidal current energy capture is proposed. The system is constructed with oscillating hydrofoils as tidal current energy capture device combined with offshore wind turbine underwater tower. Lattice Boltzmann method and large eddy simulation method were combined, and the hydrodynamic characteristics and energy collection efficiency of a NACA0015 airfoil with different motion parameters were numerically analyzed with or without the influence of tower wake. The influence of pitch amplitude, heave amplitude and chord length of the hydrofoil on the energy collection efficiency of the system is analyzed from the aspect of vortex structure in the moving process. The results show that the energy collection efficiency of the oscillating wing is significantly improved by the trailing vortex of the tower, and the vortex shedding behind the tower can reduced by the addition of the oscillating wing, consequently, the fatigue load caused by the flow around the cylindrical body can be reduced. The energy capture efficiency of the oscillating wing can reach a highest efficiently of 30.72% in the wake vortex region of the tower, which has obvious advantages compared with the traditional oscillating wing tidal current energy capture device, and provides an effective way to improve the overall energy utilization rate of offshore wind farms.
Key words:    tidal current energy    oscillating hydrofoil    lattice Boltzmann method    large eddy simulation   
收稿日期: 2022-04-08     修回日期:
DOI: 10.1051/jnwpu/20234110188
基金项目: 国家重点研发计划(2019YFE0192600)、国家自然科学基金(51905469)与扬州市自然科学基金(2017YFB0902100)资助
通讯作者: 孙振业(1990-),扬州大学副教授,主要从事风力机空气动力学、风力机气动声学、翼型与叶片设计、气动弹性力学研究。e-mail:zhenye_sun@yzu.edu.cn     Email:zhenye_sun@yzu.edu.cn
作者简介: 朱卫军(1976-),扬州大学教授、博士生导师,主要从事风力机空气动力学、风力机气动声学研究。
相关功能
PDF(4421KB) Free
打印本文
把本文推荐给朋友
作者相关文章
朱卫军  在本刊中的所有文章
庄舒青  在本刊中的所有文章
陈东阳  在本刊中的所有文章
曹九发  在本刊中的所有文章
付士凤  在本刊中的所有文章
孙振业  在本刊中的所有文章

参考文献:
[1] MCKINNEY W, DELAURIER J. Wingmill:an oscillating-wing windmill[J]. Journal of Energy, 1981, 5(2):80-87
[2] KINSEY T, DUMAS G. Computational fluid dynamics analysis of a hydrokinetic turbine based on oscillating hydrofoils[J]. Journal of Fluids Engineering, 2012, 134(2):1-16
[3] KINSEY T, DUMAS G. Parametric study of an oscillating airfoil in a power-extraction regime[J]. AIAA Journal, 2008, 46(6):1318-1330
[4] YOUNG J, ASHRAF M A, LAI J, et al. Numerical simulation of fully passive flapping foil power generation[J]. AIAA Journal, 2013, 51(11):2727-2739
[5] SU Y, BREUER K S. Resonant response and optimal energy harvesting of an elastically mounted pitching and heaving hydrofoil[J]. Physical Review Fluids, 2019, 4(6):1-18
[6] BAIK Y S, BERNAL L P, GRANLUND K, et al. Unsteady force generation and vortex dynamics of pitching and plunging aerofoils[J]. Journal of Fluid Mechanics, 2012, 709:37-68
[7] RIBEIRO B L R, FRANK S L, FRANCK J A. Vortex dynamics and Reynolds number effects of an oscillating hydrofoil in energy harvesting mode[J]. Journal of Fluids and Structures, 2020, 94:1-15
[8] 谢玉东, 马鹏磊, 王勇, 等. 振荡翼在非均匀流中的能量提取性能分析[J]. 太阳能学报, 2018, 39(4):886-891 XIE Yudong, MA Penglei, WANG Yong, et al. Analysis of energy extraction performance of oscillating foil in non-uniform flow[J]. Acta Energiae Solaris Sinica, 2018, 39(4):886-891 (in Chinese)
[9] AKHTAR I, MITTAL R, LAUDER G V, et al. Hydrodynamics of a biologically inspired tandem flapping foil configuration[J]. Theoretical & Computational Fluid Dynamics, 2007, 21(3):155-170
[10] LINDSEY K. Feasibility study of oscillating-wing power generators[D]. Monterey:Naval Postgraduate School, 2002
[11] JONES K D, LINDSEY K, PLATZER M F. An investigation of the fluid-structure interaction in an oscillating-wing micro-hydropower generator[J]. Physics of Atomic Nuclei, 2003, 71:73-82
[12] ASHRAF M A, YOUNG J, LAI J, et al. Numerical analysis of an oscillating-wing wind and hydropower generator[J]. AIAA Journal, 2011, 49(7):1374-1386
[13] 乔凯, 王启先, 王勇, 等. 振荡翼改进运动模型的能量捕获性能分析[J]. 山东大学学报, 2020, 50(6):40-47 QIAO Kai, WANG Qixian, WANG Yong, et al. Energy harvesting performance analysis on improved motion model of oscillating hydro-foil[J]. Journal of Shandong University, 2020, 50(6):40-47 (in Chinese)
[14] 孙光, 王勇, 谢玉东, 等. 尾缘襟翼振荡水翼的水动力特性[J]. 山东大学学报, 2020, 50(6):23-29 SUN Guang, WANG Yong, XIE Yudong, et al. Hydrodynamic characteristics of oscillating hydrofoil with trailing edge[J]. Journal of Shandong University, 2020, 50(6):23-29 (in Chinese)
[15] KARBASIAN H R, ESFAHANI J A, BARATI E. The power extraction by flapping foil hydrokinetic turbine in swing arm mode[J]. Renewable Energy, 2016, 88:130-142
[16] MA Penglei, YANG Zhihong, WANG Yong, et al. Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device[J]. Renewable Energy, 2017, 113:648-659
[17] 马鹏磊, 王勇, 刘海宾, 等. 摆式振荡水翼的水动力性能分析[J]. 太阳能学报, 2018, 39(3):665-672 MA Penglei, WANG Yong, LIU Haibin, et al. Analysis on hydrodynamic performance of flapping foil with swing motion[J]. Acta Energiae Solaris Sinica, 2018, 39(3):665-672 (in Chinese)
[18] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009 HE Yaling, WANG Yong, LI Qing. Theory and application of lattice Boltzmann method[M]. Beijing:Science Press, 2009 (in Chinese)
[19] QIAN Y H, D'HUMIRES D, LALLEMAND P. Lattice BGK model for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6):479-484
[20] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow Turbulence and Combustion, 1999, 62(3):183-200
[21] HOU S, STERLING J, CHEN S, et al. A lattice Boltzmann subgrid model for high Reynolds number flows[J]. Fields Institute Communications, 1994, 6:1-18
[22] 许昌, 黄海琴, 施晨, 等. 基于LBM-LES方法的典型复杂地形作用下风力机尾流数值模拟[J]. 中国电机工程学报, 2020, 40(13):4236-4243 XU Chang, HUANG Haiqin, SHI Chen, et al. Numerical simulation of wind turbine wakes in typical complex terrains based on LBM-LES Method[J]. Proceedings of the CSEE, 2020, 40(13):4236-4243 (in Chinese)
[23] RIBEIRO A, CASALINO D, FARES E. Lattice-Boltzmann simulations of an oscillating NACA0012 airfoil in dynamic stall[M]. Mykonos:Springer International Publishing, 2016
[24] POVITSKY A. Modeling of pitching and plunging airfoils in proximity for thrust generation[C]//46th AIAA Fluid Dynamics Conference, Washington, 2016