论文:2023,Vol:41,Issue(1):170-179
引用本文:
林福根, 温祥西, 吴明功, 衡宇铭. 基于Voronoi图和改进K-means的扇区优化研究[J]. 西北工业大学学报
LIN Fugen, WEN Xiangxi, WU Minggong, HENG Yuming. Research on airspace sector optimization based on Voronoi diagram and improved K-means algorithm[J]. Journal of Northwestern Polytechnical University

基于Voronoi图和改进K-means的扇区优化研究
林福根1,2, 温祥西1,2, 吴明功1,2, 衡宇铭1,2
1. 空军工程大学 空管领航学院, 陕西 西安 710051;
2. 国家空管防相撞技术重点实验室, 陕西 西安 710051
摘要:
扇区划分是空中交通管制的一项重要工作,合理的扇区划分能够提高空域的使用率,保障航空器的飞行安全。鉴于平峰时段的扇区划设不能很好适用于复杂空情的现状,提出一种基于Voronoi图和改进K-means的扇区优化方法。依据空情态势构建冲突网络,结合航空器速度障碍关系和复杂网络理论提出了扇区综合管制负荷计量方式。依据负荷值采用改进K-means聚类方法确定了合理的聚类中心作为Voronoi图的生成元,从而使用Voronoi图的划分方法生成合理边界来优化扇区。采集厦门空域管制扇区数据作为仿真场景进行了计算分析,结果表明,在繁忙时段,优化后的扇区管制负荷平均方差相比原扇区降低了66.04%,平峰时段降低了13.88%,达到了均衡扇区负荷的目的,验证了扇区优化方法的有效性,为现有的扇区划设工作提供了参考依据。
关键词:    空中交通管制    扇区优化    K-means    速度障碍法    Voronoi图   
Research on airspace sector optimization based on Voronoi diagram and improved K-means algorithm
LIN Fugen1,2, WEN Xiangxi1,2, WU Minggong1,2, HENG Yuming1,2
1. Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an 710051, China;
2. National Key Laboratory of Air Traffic Collision Prevention, Xi'an 710051, China
Abstract:
Sector partition is an important task of air traffic control, and a reasonable sector partition can improve the utilization rate of airspace and protect the flight safety of aircrafts. Since the sector partition during flat hours is not well suited to the complex air situation, this paper proposes a sector optimization method based on Voronoi diagram and improved K-means. Firstly, a conflict network is constructed based on the air situation, and a comprehensive sector control workload measurement method is proposed by combining aircraft velocity obstacle relationship and complex network theory. Based on the workload value, a cluster center is determined as the generating element of Voronoi diagram by using the improved K-means method, and then the sector is optimized by using the division method of Voronoi diagram. In this paper, the data of Xiamen airspace control sectors are collected as a simulation scenario for calculation and analysis. The simulation results show that the average variance of the optimized sector control workload is reduced by 66.04% during the peak hours and 13.88% during the flat hours compared with the original sector. The method achieves the purpose of balancing the sector workload, verifies the effectiveness of the sector optimization method, and provides a reference basis for the existing sector partition work.
Key words:    air traffic control    sector optimization    K-means algorithm    velocity obstacle    Voronoi diagram   
收稿日期: 2022-04-11     修回日期:
DOI: 10.1051/jnwpu/20234110170
基金项目: 国家自然科学基金(71801221,52074309)资助
通讯作者: 温祥西(1985-),空军工程大学副教授,主要从事航空网络安全、复杂网络理论及智能空中交通系统研究。e-mail:wxxajy@163.com     Email:wxxajy@163.com
作者简介: 林福根(1997-),空军工程大学硕士研究生,主要从事航空管制与安全、复杂网络理论及空管智能化研究。
相关功能
PDF(3718KB) Free
打印本文
把本文推荐给朋友
作者相关文章
林福根  在本刊中的所有文章
温祥西  在本刊中的所有文章
吴明功  在本刊中的所有文章
衡宇铭  在本刊中的所有文章

参考文献:
[1] LI J H, WANG T, SAVAI M, et al. Graph-based algorithm for dynamic airspace configuration[J]. Journal of Guidance Control and Dynamics, 2010, 33(4):1082-1094
[2] KULKARNI S, GANESAN R, SHERRY L. Static sectorization approach to dynamic airspace configuration using approximate dynamic programming[J]. Journal of the Transportation Research Board, 2011(2266):1-9
[3] GIANAZZA D. Forecasting workload and airspace configuration with neural networks and tree search methods[J]. Artificial Intelligence, 2010, 174(7/8):530-549
[4] HUANG X, LI H N, RAO Z W, et al. Fracture behavior and self-sharpening mechanisms of polycrystalline cubic boron nitride in grinding based on cohesive element method[J]. Chinese Journal of Aeronautics,2019, 32(12):2727-2742
[5] LEGLAND D, GUILLON F, DEVAUX M F. Parametric mapping of cellular morphology in plant tissue sections by gray level granulometry[J]. Plant Methods, 2020, 16(3):5872-5881
[6] TIEN M, PARK Y Y, JUNG K H, et al. Performance evaluation on the accuracy of the semantic map of an autonomous robot equipped with P2P communication module[J]. Peer-to-Peer Networking and Applications, 2020, 13(3):704-716
[7] 韩松臣, 张明, 黄卫芳. 管制扇区优化划分的方法及计算机实现技术[J]. 交通运输工程学报, 2003(1):101-104 HAN Songchen, ZHANG Ming, HUANG Weifang. The method of optimal division of control sectors and computer realization technology[J]. Journal of Traffic and Transportation Engineering, 2003(1):101-104 (in Chinese)
[8] 王莉莉, 贾铧霏. 基于复杂度分析的空域扇区划分[J]. 南京航空航天大学学报, 2017, 49(1):140-146 WANG Lili, JIA Huafei. Sector division of airspace based on complexity analysis[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(1):140-146 (in Chinese)
[9] SOH S W, ZHONG Z W. Sectorisation of airspace based on balanced workloads[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(2):213-221
[10] XUE M. Airspace sector redesign based on Voronoi diagrams[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(12):624-634
[11] 杨光, 胡明华, 王艳军. 基于非线性规划的空域扇区结构优化设计[J]. 交通运输工程与信息学报,2008, 6(4):82-86 YANG Guang, HU Minghua, WANG Yanjun. Optimization design of airspace sector structure based on nonlinear programming[J]. Journal of Transportation Engineering and Information,2008, 6(4):82-86 (in Chinese)
[12] GRANBERG T A, POLISHCHUK T, POLISHCHUK V, et al. Integer programming-based airspace sectorization for terminal maneuvering areas with convex sectors[J]. Journal of Air Transportation, 2019, 27(4):169-180
[13] SERHAN D, YOON S W, CHUNG S H. Dynamic reconfiguration of terminal airspace during convective weather:robust optimization and conditional value-at-risk approaches[J]. Computers & Industrial Engineering, 2019, 132:333-347
[14] 罗军, 王珏. 北京终端区扇区容量评估及优化[J]. 科学技术与工程, 2012, 12(33):8967-8970 LUO Jun, WANG Jue. Assessment and optimization of sector capacity in Beijing terminal area[J]. Science Technology and Engineering, 2012, 12(33):8967-8970 (in Chinese)
[15] 张明, 韩松臣. 依据管制员工作负荷的扇区优化方法[J]. 交通运输工程学报, 2005(4):86-89 ZHANG Ming, HAN Songchen. Sector optimization method based on controller workload[J]. Journal of Traffic and Transportation Engineering, 2005(4):86-89 (in Chinese)
[16] 张兆宁, 张东满. 基于Delauany三角形的分时段区域管制扇区划分[J]. 科学技术与工程, 2014, 14(29):100-105 ZHANG Zhaoning, ZHANG Dongman. Division of regional control sectors based on delauany triangle[J]. Science, Technology and Engineering, 2014, 14(29):100-105 (in Chinese)
[17] XU Y, PRATS X, DELAHAYE D. Synchronised demand-capacity balancing in collaborative air traffic flow management[J]. Transportation Research Part C-Emerging Technologies, 2020, 114:359-376
[18] SALAU E N, GARIEL M, VELA A E, et al. Aircraft proximity maps based on data-driven flow modeling[J]. Journal of Guidance, Control, and Dynamics, 2012,35(2):563-577
[19] JIANG X R, WEN X X, WU M G, et al. A complex network analysis approach for identifying air traffic congestion based on independent component analysis[J]. Physica, 2019, 523:364-381
[20] 郭世泽, 陆泽明. 复杂网络理论基础[M]. 北京:科学出版社, 2012 GUO Shize, LU Zeming. Foundations of complex network theory[M]. Beijing:Science Press, 2012 (in Chinese)
[21] 姚佳奇, 唐波, 刘子怡. 基于改进K-means聚类算法的海外欠发达城市配电网规划[J]. 电子测量技术, 2021, 44(23):54-60 YAO Jiaqi, TANG Bo, LIU Ziyi. Distribution network planning for overseas underdeveloped cities based on improved K-means clustering algorithm[J]. Electronic Measurement Technology, 2021, 44(23):54-60 (in Chinese)