论文:2023,Vol:41,Issue(1):90-96
引用本文:
李一帆, 孙亚松, 张华波, 李思达, 刘长号, 马菁. 微分单元法分析圆柱内各向异性散射介质热辐射[J]. 西北工业大学学报
LI Yifan, SUN Yasong, ZHANG Huabo, LI Sida, LIU Changhao, MA Jing. Analyzing thermal radiation in cylindrical anisotropic scattering medium with element differential method[J]. Journal of Northwestern Polytechnical University

微分单元法分析圆柱内各向异性散射介质热辐射
李一帆1, 孙亚松1,2, 张华波1, 李思达1, 刘长号1, 马菁3
1. 西北工业大学 动力与能源学院, 陕西 西安 710072;
2. 西北工业大学 太仓长三角研究院, 江苏 太仓 215400;
3. 长安大学 汽车学院, 陕西 西安 710064
摘要:
自发辐射燃烧诊断技术对获取燃烧系统内高方向分辨率辐射强度有强烈需求。利用微分单元法数值稳定、易于实施的特点,构建一种能在圆柱坐标系各向异性散射介质中,获取角度和空间上高分辨率辐射强度的辐射模型。在模型分析中,将辐射强度进行三维高阶离散;针对辐射传递方程的强对流特性,提出一种迎风方案抑制数值振荡;对于辐射边界存在的强间断奇异点,采用双层节点方案进行捕捉。与解析解对比发现,基于微分单元法的辐射模型能够实现辐射强度的高分辨率刻画,且具有高阶精度;与蒙特卡罗法结果对比,验证了此模型的准确性和有效性。进一步刻画辐射强度在角度和空间上的三维分布,证明迎风方案可以有效抑制数值振荡、实现稳定计算。
关键词:    微分单元法    热辐射    迎风格式    数值模拟辐射强度    高方向分辨率   
Analyzing thermal radiation in cylindrical anisotropic scattering medium with element differential method
LI Yifan1, SUN Yasong1,2, ZHANG Huabo1, LI Sida1, LIU Changhao1, MA Jing3
1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
2. Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China;
3. School of Automobile, Chang'an University, Xi'an 710064, China
Abstract:
The spontaneous radiation combustion diagnosis technology has high requirements for obtaining the radiation intensity of highly directional resolution in a combustion system. Taking advantage of the numerical stability and easy implementation of the element differential method, this paper constructs a radiation model that can achieve the radiation intensity of spatial and angular high-resolution in cylindrical anisotropic scattering medium. In analyzing the radiation model, the radiation intensity is discretized in three dimensions. An upwind scheme is proposed to suppress the numerical oscillation of the strong convection characteristics of the radiation transfer equation. The double-layer node algorithm is used to capture the strong discontinuous singularities at the radiation boundary. The comparison with the analytical solution shows that the radiation model based on the element differential method can achieve the high-resolution description of radiation intensity with high-order accuracy. The accuracy and validity of the radiation model are verified through comparing with the results on the Monte Carlo method. The further description of the three-dimensional distribution of radiation intensity in angle and space proves that the up-wind scheme can effectively suppress numerical oscillation and realize stable calculation.
Key words:    element differential method    thermal radiation    upwind scheme    radiation intensity    high directional resolution   
收稿日期: 2022-04-18     修回日期:
DOI: 10.1051/jnwpu/20234110090
基金项目: 国家自然科学基金面上项目(51976173)、霍英东青年教师基金(161052)、江苏省自然科学基金(BK20201204)、太仓市基础研究计划(TC2019JC01)与国家博士后基金特别资助项目(2020T130534)资助
通讯作者: 孙亚松(1986-),西北工业大学副教授,主要从事高温介质传热研究。e-mail:yssun@nwpu.edu.cn     Email:yssun@nwpu.edu.cn
作者简介: 李一帆(1998-),西北工业大学博士研究生,主要从事高温动力系统内耦合传热研究。
相关功能
PDF(2363KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李一帆  在本刊中的所有文章
孙亚松  在本刊中的所有文章
张华波  在本刊中的所有文章
李思达  在本刊中的所有文章
刘长号  在本刊中的所有文章
马菁  在本刊中的所有文章

参考文献:
[1] 娄春, 张鲁栋, 蒲旸, 等. 基于自发辐射分析的被动式燃烧诊断技术研究进展[J]. 实验流体力学, 2021, 35(1):1-17 LOU Chun, ZHANG Ludong, PU Yang, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1):1-17 (in Chinese)
[2] 郑丹伟, 刘勇, 张祥. 基于火焰图像诊断的模型燃烧室燃烧不稳定特性[J]. 航空动力学报, 2021, 36(7):1481-1488 ZHENG Danwei, LIU Yong, ZHANG Xiang. Combustion instability characteristic of model combustor based on flame image diagnosis[J]. Journal of Aerospace Power, 2021, 36(7):1481-1488 (in Chinese)
[3] YU Y, LI B W, THESS A. The effect of a uniform magnetic field on vortex breakdown in a cylinder with rotating upper lid[J]. Computers and Fluids, 2013(88):510-523
[4] GAO H, ZHAO H. A fast-forward solver of radiative transfer equation[J]. Transport Theory and Statical Physics, 2009, 38(3):149-192
[5] 杨占春, 武文斐, 李义科. 模拟辐射传热的离散坐标法的改进[J]. 计算物理, 2005,22(3):277-282 YANG Zhanchun, WU Wenfei, LI Yike. An improvement on the discrete ordinate method in simulating radiative heat-transfer[J]. Chinese Journal of Computational Physics, 2005, 22(3):277-282 (in Chinese)
[6] LIU L H. Finite volume method for radiation heat transfer in graded index medium[J]. Journal of Thermo Physics and Heat Transfer, 2006, 20(1):59-66
[7] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解[J]. 物理学报, 2020, 69(3):176-184 WANG Cunhai, ZHENG Shu, ZHANG Xinxin. Discontinuous finite element solutions for coupled radiation conduction heat transfer in irregular media[J]. Acta Physica Sinica, 2020, 69(3):176-184 (in Chinese)
[8] CUI T Y, YANG Y G, XUE H Y, et al. A Monte-Carlo simulation method for the study of self-powered neutron detectors[J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 954:161383
[9] GAO X W, HUANG S Z, CUI M, et al. Element differential method for solving general heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2017, 115:882-894
[10] GAO X W, LIU H Y, XU B B, et al. Element differential method with the simplest quadrilateral and hexahedron quadratic elements for solving heat conduction problems[J]. Numerical Heat Transfer Part B, 2018, 73(4):206-224
[11] GAO X W, LIU H Y, LYU J, et al. A novel element differential method for solid mechanical problems using isoparametric triangular and tetrahedral elements[J]. Computers and Mathematics with Applications, 2019, 78(11):3563-3585
[12] CHEN S S, LI B W, SUN Y S. Chebyshev collocation spectral method for solving radiative transfer with the modified discrete ordinates formulations[J]. International Journal of Heat Mass Transfer, 2015, 88:388-397
[13] LI B W, ZHAO Y R, YU Y, et al. Three-dimensional transient Navier-Stokes solvers in cylindrical coordinate system based on a spectral collocation method using explicit treatment of the pressure[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 66(3):284-298
[14] ZHOU R R, LI B W. Chebyshev collocation spectral method for one-dimensional radiative heat transfer in linearly anisotropic scattering cylindrical medium[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189:206-220
[15] 吴鸣, 周瑞睿, 李本文. 配置点谱方法求解一维圆柱梯度折射率介质中的辐射传热[J]. 计算物理, 2020, 37(3):320-326 WU Ming, ZHOU Ruirui, LI Benwen. Collocation spectral method for radiative heat transfer in one-dimensional cylindrical medium with graded index[J]. Chinese Journal of Computational Physics, 2020, 37(3):320-326 (in Chinese)
[16] 马菁, 孙亚松, 李本文. 全谱方法求解平行平板间非线性各向异性散射介质内辐射换热[J]. 中国科技论文, 2013, 8(8):727-731 MA Jing, SUN Yasong, LI Benwen. Solution of thermal radiation heat transfer in a plane-parallel, nonlinear anisotropic scattering medium by full spectral method[J]. China Science paper, 2013, 8(8):727-731 (in Chinese)
[17] MA J, SUN Y S, LI B W. Analysis of radiative transfer in a one-dimensional nonlinear anisotropic scattering medium with space-dependent scattering coefficient using spectral collocation method[J]. International Journal of Heat Mass Transfer, 2013, 67:569-574
[18] MA J, SUN Y S, LI B W. Completely spectral collocation solution of radiative heat transfer in an anisotropic scattering slab with a graded index medium[J]. Journal of Heat Transfer, 2014, 136(1):012701
[19] MA J, SUN Y S, LI B W, et al. Spectral collocation method for radiative conductive porous fin with temperature dependent properties[J]. Energy Conversion and Management, 2016, 111:279-288
[20] WANG H, ABEDI R, MUDALIAR S. Space-angle discontinuous Galerkin method for radiative transfer between concentric cylinders[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 257:107281